
Universidad Nacional de Rosario - :$ CONTENTS - CONTENTS Page 1 of 25

.

Contents

1 Data structures 2
1.1 Segment tree . 2
1.2 Segment tree - Lazy propagation . 2
1.3 Segment tree - Persistence . 2
1.4 Segment tree - 2D . 3
1.5 Sparse table (static RMQ) . 3
1.6 Wavelet tree . 3
1.7 STL extended set . 4
1.8 Treap (as BST) . 4
1.9 Treap (implicit key) . 4
1.10 Convex hull trick (static) . 5
1.11 Convex hull trick (dynamic) . 6
1.12 Max Queue . 6
1.13 Union Find . 6

2 Graphs 6
2.1 Bellman-Ford . 6
2.2 Floyd-Warshall . 6
2.3 Strongly connected components (+ 2-SAT) 7
2.4 Articulation - Bridges - Biconnected . 7
2.5 Chu-Liu (minimum spanning arborescence) 8
2.6 LCA - Binary Lifting . 8
2.7 Heavy-Light decomposition . 8
2.8 Centroid decomposition . 9
2.9 Eulerian path . 9
2.10 Dynamic connectivity . 9
2.11 Edmond’s blossom (matching in general graphs) 10

3 Math 11
3.1 Identities . 11
3.2 Theorems . 11
3.3 Integer floor division . 11
3.4 Extended Euclid . 11
3.5 Pollard’s rho . 11
3.6 Simpson’s rule . 12
3.7 Polynomials . 12
3.8 Bairstow . 13
3.9 Fast Fourier Transform . 14

3.10 Fast Hadamard Transform . 14

3.11 Karatsuba . 14

3.12 Modular inverse . 15

3.13 Chinese remainder theorem (Euge) . 15

3.14 Mobius . 15

3.15 Linear Recurrence . 15

3.16 Gaussian Elimination . 16

3.17 Simplex . 16

4 Geometry 16

4.1 Point . 16

4.2 Line . 16

4.3 Circle . 17

4.4 Polygon . 18

4.5 Plane . 19

4.6 Convex hull . 19

5 Strings 19

5.1 KMP . 19

5.2 Z function . 20

5.3 Manacher . 20

5.4 Aho-Corasick . 20

5.5 Suffix automaton . 21

5.6 Suffix array . 21

5.7 LCP (Longest Common Prefix) . 21

5.8 Suffix Tree (Ukkonen’s algorithm) . 21

5.9 Hashing . 22

6 Flow 22

6.1 Matching (slower) . 22

6.2 Matching (Hopcroft-Karp) . 22

6.3 Hungarian . 23

6.4 Dinic . 23

6.5 Min cost max flow . 24

7 Other 24

7.1 Mo’s algorithm . 24

7.2 Divide and conquer DP optimization . 25

7.3 Dates . 25

7.4 C++ stuff . 25

7.5 Max number of divisors up to 10n . 25

Universidad Nacional de Rosario - :$ CONTENTS - 1. DATA STRUCTURES Page 2 of 25

1 Data structures

1.1 Segment tree

1 #define oper min

2 #define NEUT INF

3 struct STree { // segment tree for min over integers

4 vector<int> st;int n;

5 STree(int n): st(4*n+5,NEUT), n(n) {}

6 void init(int k, int s, int e, int *a){

7 if(s+1==e){st[k]=a[s];return;}

8 int m=(s+e)/2;

9 init(2*k,s,m,a);init(2*k+1,m,e,a);

10 st[k]=oper(st[2*k],st[2*k+1]);

11 }

12 void upd(int k, int s, int e, int p, int v){

13 if(s+1==e){st[k]=v;return;}

14 int m=(s+e)/2;

15 if(p<m)upd(2*k,s,m,p,v);

16 else upd(2*k+1,m,e,p,v);

17 st[k]=oper(st[2*k],st[2*k+1]);

18 }

19 int query(int k, int s, int e, int a, int b){

20 if(s>=b||e<=a)return NEUT;

21 if(s>=a&&e<=b)return st[k];

22 int m=(s+e)/2;

23 return oper(query(2*k,s,m,a,b),query(2*k+1,m,e,a,b));

24 }

25 void init(int *a){init(1,0,n,a);}

26 void upd(int p, int v){upd(1,0,n,p,v);}

27 int query(int a, int b){return query(1,0,n,a,b);}

28 }; // usage: STree rmq(n);rmq.init(x);rmq.upd(i,v);rmq.query(s,e);

1.2 Segment tree - Lazy propagation

1 struct STree { // example: range sum with range addition

2 vector<int> st,lazy;int n;

3 STree(int n): st(4*n+5,0), lazy(4*n+5,0), n(n) {}

4 void init(int k, int s, int e, int *a){

5 lazy[k]=0; // lazy neutral element

6 if(s+1==e){st[k]=a[s];return;}

7 int m=(s+e)/2;

8 init(2*k,s,m,a);init(2*k+1,m,e,a);

9 st[k]=st[2*k]+st[2*k+1]; // operation

10 }

11 void push(int k, int s, int e){

12 if(!lazy[k])return; // if neutral, nothing to do

13 st[k]+=(e-s)*lazy[k]; // update st according to lazy

14 if(s+1<e){ // propagate to children

15 lazy[2*k]+=lazy[k];

16 lazy[2*k+1]+=lazy[k];

17 }

18 lazy[k]=0; // clear node lazy

19 }

20 void upd(int k, int s, int e, int a, int b, int v){

21 push(k,s,e);

22 if(s>=b||e<=a)return;

23 if(s>=a&&e<=b){

24 lazy[k]+=v; // accumulate lazy

25 push(k,s,e);return;

26 }

27 int m=(s+e)/2;

28 upd(2*k,s,m,a,b,v);upd(2*k+1,m,e,a,b,v);

29 st[k]=st[2*k]+st[2*k+1]; // operation

30 }

31 int query(int k, int s, int e, int a, int b){

32 if(s>=b||e<=a)return 0; // operation neutral

33 push(k,s,e);

34 if(s>=a&&e<=b)return st[k];

35 int m=(s+e)/2;

36 return query(2*k,s,m,a,b)+query(2*k+1,m,e,a,b); // operation

37 }

38 void init(int *a){init(1,0,n,a);}

39 void upd(int a, int b, int v){upd(1,0,n,a,b,v);}

40 int query(int a, int b){return query(1,0,n,a,b);}

41 }; // usage: STree rmq(n);rmq.init(x);rmq.upd(s,e,v);rmq.query(s,e);

1.3 Segment tree - Persistence

1 #define oper min

2 #define NEUT INF

3 struct STree { // persistent segment tree for min over integers

4 vector<int> st,l,r;int n,rt,sz;

5 STree(int n): st(24*n,NEUT),l(24*n,0),r(24*n,0),n(n),rt(0),sz(1){}

6 // be careful with memory! 4*n+q*log(n) . 24*n should be enough

7 int init(int s, int e, int *a){ // not necessary in most cases

8 int k=sz++;

9 if(s+1==e){st[k]=a[s];return k;}

10 int m=(s+e)/2;

Universidad Nacional de Rosario - :$ CONTENTS - 1. DATA STRUCTURES Page 3 of 25

11 l[k]=init(s,m,a);r[k]=init(m,e,a);

12 st[k]=oper(st[l[k]],st[r[k]]);

13 return k;

14 }

15 int upd(int k, int s, int e, int p, int v){

16 int nk=sz++;l[nk]=l[k];r[nk]=r[k];

17 if(s+1==e){st[nk]=v;return nk;}

18 int m=(s+e)/2;

19 if(p<m)l[nk]=upd(l[k],s,m,p,v);

20 else r[nk]=upd(r[k],m,e,p,v);

21 st[nk]=oper(st[l[nk]],st[r[nk]]);

22 return nk;

23 }

24 int query(int k, int s, int e, int a, int b){

25 if(s>=b||e<=a)return NEUT;

26 if(s>=a&&e<=b)return st[k];

27 int m=(s+e)/2;

28 return oper(query(l[k],s,m,a,b),query(r[k],m,e,a,b));

29 }

30 int init(int *a){return init(0,n,a);}

31 int upd(int k, int p, int v){return rt=upd(k,0,n,p,v);}

32 int upd(int p, int v){return upd(rt,p,v);} // update on last root

33 int query(int k, int a, int b){return query(k,0,n,a,b);}

34 }; // usage: STree rmq(n);root=rmq.init(x);new_root=rmq.upd(root,i,v);rmq.

query(root,s,e);

1.4 Segment tree - 2D

1 int n,m;

2 int a[MAXN][MAXN],st[2*MAXN][2*MAXN];

3 void build(){

4 forn(i,n)forn(j,m)st[i+n][j+m]=a[i][j];

5 forn(i,n)for(int j=m-1;j;--j)

6 st[i+n][j]=op(st[i+n][j<<1],st[i+n][j<<1|1]);

7 for(int i=n-1;i;--i)forn(j,2*m)

8 st[i][j]=op(st[i<<1][j],st[i<<1|1][j]);

9 }

10 void upd(int x, int y, int v){

11 st[x+n][y+m]=v;

12 for(int j=y+m;j>1;j>>=1)st[x+n][j>>1]=op(st[x+n][j],st[x+n][j^1]);

13 for(int i=x+n;i>1;i>>=1)for(int j=y+m;j;j>>=1)

14 st[i>>1][j]=op(st[i][j],st[i^1][j]);

15 }

16 int query(int x0, int x1, int y0, int y1){

17 int r=NEUT;

18 for(int i0=x0+n,i1=x1+n;i0<i1;i0>>=1,i1>>=1){

19 int t[4],q=0;

20 if(i0&1)t[q++]=i0++;

21 if(i1&1)t[q++]=--i1;

22 forn(k,q)for(int j0=y0+m,j1=y1+m;j0<j1;j0>>=1,j1>>=1){

23 if(j0&1)r=op(r,st[t[k]][j0++]);

24 if(j1&1)r=op(r,st[t[k]][--j1]);

25 }

26 }

27 return r;

28 }

1.5 Sparse table (static RMQ)

1 #define oper min

2 int st[K][1<<K];int n; // K such that 2^K>n

3 void st_init(int *a){

4 forn(i,n)st[0][i]=a[i];

5 forr(k,1,K)forn(i,n-(1<<k)+1)

6 st[k][i]=oper(st[k-1][i],st[k-1][i+(1<<(k-1))]);

7 }

8 int st_query(int s, int e){

9 int k=31-__builtin_clz(e-s);

10 return oper(st[k][s],st[k][e-(1<<k)]);

11 }

1.6 Wavelet tree

1 struct WT {

2 vector<int> wt[1<<20];int n;

3 void init(int k, int s, int e){

4 if(s+1==e)return;

5 wt[k].clear();wt[k].pb(0);

6 int m=(s+e)/2;

7 init(2*k,s,m);init(2*k+1,m,e);

8 }

9 void add(int k, int s, int e, int v){

10 if(s+1==e)return;

11 int m=(s+e)/2;

12 if(v<m)wt[k].pb(wt[k].back()),add(2*k,s,m,v);

13 else wt[k].pb(wt[k].back()+1),add(2*k+1,m,e,v);

14 }

15 int query0(int k, int s, int e, int a, int b, int i){

Universidad Nacional de Rosario - :$ CONTENTS - 1. DATA STRUCTURES Page 4 of 25

16 if(s+1==e)return s;

17 int m=(s+e)/2;

18 int q=(b-a)-(wt[k][b]-wt[k][a]);

19 if(i<q)return query0(2*k,s,m,a-wt[k][a],b-wt[k][b],i);

20 else return query0(2*k+1,m,e,wt[k][a],wt[k][b],i-q);

21 }

22 void upd(int k, int s, int e, int i){

23 if(s+1==e)return;

24 int m=(s+e)/2;

25 int v0=wt[k][i+1]-wt[k][i],v1=wt[k][i+2]-wt[k][i+1];

26 if(!v0&&!v1)upd(2*k,s,m,i-wt[k][i]);

27 else if(v0&&v1)upd(2*k+1,m,e,wt[k][i]);

28 else if(v0)wt[k][i+1]--;

29 else wt[k][i+1]++;

30 }

31 void init(int _n){n=_n;init(1,0,n);} // (values in range [0,n))

32 void add(int v){add(1,0,n,v);}

33 int query0(int a, int b, int i){ // ith element in range [a,b)

34 return query0(1,0,n,a,b,i); // (if it was sorted)

35 }

36 void upd(int i){ // swap positions i,i+1

37 upd(1,0,n,i);

38 }

39 };

1.7 STL extended set

1 #include<ext/pb_ds/assoc_container.hpp>

2 #include<ext/pb_ds/tree_policy.hpp>

3 using namespace __gnu_pbds;

4 typedef tree<int,null_type,less<int>,rb_tree_tag,

tree_order_statistics_node_update> ordered_set;

5 // find_by_order(i) -> iterator to ith element

6 // order_of_key(k) -> position (int) of lower_bound of k

1.8 Treap (as BST)

1 typedef struct item *pitem;

2 struct item {

3 int key,pr,cnt;

4 pitem l,r;

5 item(int key):key(key),pr(rand()),cnt(1),l(0),r(0) {}

6 };

7 int cnt(pitem t){return t?t->cnt:0;}

8 void upd_cnt(pitem t){if(t)t->cnt=cnt(t->l)+cnt(t->r)+1;}

9 void split(pitem t, int key, pitem& l, pitem& r){ // l: < key, r: >= key

10 if(!t)l=r=0;

11 else if(key<t->key)split(t->l,key,l,t->l),r=t;

12 else split(t->r,key,t->r,r),l=t;

13 upd_cnt(t);

14 }

15 void insert(pitem& t, pitem it){

16 if(!t)t=it;

17 else if(it->pr>t->pr)split(t,it->key,it->l,it->r),t=it;

18 else insert(it->key<t->key?t->l:t->r,it);

19 upd_cnt(t);

20 }

21 void merge(pitem& t, pitem l, pitem r){

22 if(!l||!r)t=l?l:r;

23 else if(l->pr>r->pr)merge(l->r,l->r,r),t=l;

24 else merge(r->l,l,r->l),t=r;

25 upd_cnt(t);

26 }

27 void erase(pitem& t, int key){

28 if(t->key==key)merge(t,t->l,t->r);

29 else erase(key<t->key?t->l:t->r,key);

30 upd_cnt(t);

31 }

32 pitem kth(pitem t, int k){

33 if(!t)return 0;

34 if(k==cnt(t->l))return t;

35 return k<cnt(t->l)?kth(t->l,k):kth(t->r,k-cnt(t->l)-1);

36 }

37 pair<int,int> lb(pitem t, int key){ // position and value of lower_bound

38 if(!t)return mp(0,1<<30); // (special value)

39 if(key>t->key){

40 auto w=lb(t->r,key);w.fst+=cnt(t->l)+1;return w;

41 }

42 auto w=lb(t->l,key);

43 if(w.fst==cnt(t->l))w.snd=t->key;

44 return w;

45 }

1.9 Treap (implicit key)

1 // example that supports range reverse and addition updates, and range sum

query

2 // (commented parts are specific to this problem)

Universidad Nacional de Rosario - :$ CONTENTS - 1. DATA STRUCTURES Page 5 of 25

3 typedef struct item *pitem;

4 struct item {

5 int cnt,pr,val;

6 // int sum; // (paramters for range query)

7 // bool rev;int add; // (parameters for lazy prop)

8 pitem l,r;

9 item(int val): pr(rand()),cnt(1),val(val),l(0),r(0)/*,sum(val),rev(0),add

(0)*/ {}

10 };

11 void push(pitem it){

12 if(it){

13 /*if(it->rev){

14 swap(it->l,it->r);

15 if(it->l)it->l->rev^=true;

16 if(it->r)it->r->rev^=true;

17 it->rev=false;

18 }

19 it->val+=it->add;it->sum+=it->cnt*it->add;

20 if(it->l)it->l->add+=it->add;

21 if(it->r)it->r->add+=it->add;

22 it->add=0;*/

23 }

24 }

25 int cnt(pitem t){return t?t->cnt:0;}

26 // int sum(pitem t){return t?push(t),t->sum:0;}

27 void upd_cnt(pitem t){

28 if(t){

29 t->cnt=cnt(t->l)+cnt(t->r)+1;

30 // t->sum=t->val+sum(t->l)+sum(t->r);

31 }

32 }

33 void merge(pitem& t, pitem l, pitem r){

34 push(l);push(r);

35 if(!l||!r)t=l?l:r;

36 else if(l->pr>r->pr)merge(l->r,l->r,r),t=l;

37 else merge(r->l,l,r->l),t=r;

38 upd_cnt(t);

39 }

40 void split(pitem t, pitem& l, pitem& r, int sz){ // sz:desired size of l

41 if(!t){l=r=0;return;}

42 push(t);

43 if(sz<=cnt(t->l))split(t->l,l,t->l,sz),r=t;

44 else split(t->r,t->r,r,sz-1-cnt(t->l)),l=t;

45 upd_cnt(t);

46 }

47 void output(pitem t){ // useful for debugging

48 if(!t)return;

49 push(t);

50 output(t->l);printf(" %d",t->val);output(t->r);

51 }

52 // use merge and split for range updates and queries

1.10 Convex hull trick (static)

1 typedef ll tc;

2 struct Line{tc m,h;};

3 struct CHT { // for minimum (for maximum just change the sign of lines)

4 vector<Line> c;

5 int pos=0;

6 tc in(Line a, Line b){

7 tc x=b.h-a.h,y=a.m-b.m;

8 return x/y+(x%y?!((x>0)^(y>0)):0); // ==ceil(x/y)

9 }

10 void add(tc m, tc h){ // m’s should be non increasing

11 Line l=(Line){m,h};

12 if(c.size()&&m==c.back().m){

13 l.h=min(h,c.back().h);c.pop_back();if(pos)pos--;

14 }

15 while(c.size()>1&&in(c.back(),l)<=in(c[c.size()-2],c.back())){

16 c.pop_back();if(pos)pos--;

17 }

18 c.pb(l);

19 }

20 inline bool fbin(tc x, int m){return in(c[m],c[m+1])>x;}

21 tc eval(tc x){

22 // O(log n) query:

23 int s=0,e=c.size();

24 while(e-s>1){int m=(s+e)/2;

25 if(fbin(x,m-1))e=m;

26 else s=m;

27 }

28 return c[s].m*x+c[s].h;

29 // O(1) query (for ordered x’s):

30 while(pos>0&&fbin(x,pos-1))pos--;

31 while(pos<c.size()-1&&!fbin(x,pos))pos++;

32 return c[pos].m*x+c[pos].h;

33 }

Universidad Nacional de Rosario - :$ CONTENTS - 2. GRAPHS Page 6 of 25

34 };

1.11 Convex hull trick (dynamic)

1 typedef ll tc;

2 const tc is_query=-(1LL<<62); // special value for query

3 struct Line {

4 tc m,b;

5 mutable multiset<Line>::iterator it,end;

6 const Line* succ(multiset<Line>::iterator it) const {

7 return (++it==end? NULL : &*it);}

8 bool operator<(const Line& rhs) const {

9 if(rhs.b!=is_query)return m<rhs.m;

10 const Line *s=succ(it);

11 if(!s)return 0;

12 return b-s->b<(s->m-m)*rhs.m;

13 }

14 };

15 struct HullDynamic : public multiset<Line> { // for maximum

16 bool bad(iterator y){

17 iterator z=next(y);

18 if(y==begin()){

19 if(z==end())return false;

20 return y->m==z->m&&y->b<=z->b;

21 }

22 iterator x=prev(y);

23 if(z==end())return y->m==x->m&&y->b<=x->b;

24 return (x->b-y->b)*(z->m-y->m)>=(y->b-z->b)*(y->m-x->m);

25 }

26 iterator next(iterator y){return ++y;}

27 iterator prev(iterator y){return --y;}

28 void add(tc m, tc b){

29 iterator y=insert((Line){m,b});

30 y->it=y;y->end=end();

31 if(bad(y)){erase(y);return;}

32 while(next(y)!=end()&&bad(next(y)))erase(next(y));

33 while(y!=begin()&&bad(prev(y)))erase(prev(y));

34 }

35 tc eval(tc x){

36 Line l=*lower_bound((Line){x,is_query});

37 return l.m*x+l.b;

38 }

39 };

1.12 Max Queue

1 struct MaxQueue { // for min, change < with >.

2 deque<int> d; queue<int> q;

3 void push(int v){while(sz(d)&&d.back()<v)d.pop_back();d.pb(v);q.push(v);}

4 void pop(){if(sz(d)&&d.front()==q.front())d.pop_front();q.pop();}

5 int getMax(){return sz(d)?d.front():NEUT;}

6 };

1.13 Union Find

1 int uf[MAXN];

2 void uf_init(){memset(uf,-1,sizeof(uf));}

3 int uf_find(int x){return uf[x]<0?x:uf[x]=uf_find(uf[x]);}

4 bool uf_join(int x, int y){

5 x=uf_find(x);y=uf_find(y);

6 if(x==y)return false;

7 if(uf[x]>uf[y])swap(x,y);

8 uf[x]+=uf[y];uf[y]=x;

9 return true;

10 }

2 Graphs

2.1 Bellman-Ford

1 int n;

2 vector<pair<int,int> > g[MAXN]; // u->[(v,cost)]

3 ll dist[MAXN];

4 void bford(int src){ // O(nm)

5 fill(dist,dist+n,INF);dist[src]=0;

6 forn(_,n-1)forn(x,n)if(dist[x]!=INF)for(auto t:g[x]){

7 dist[t.fst]=min(dist[t.fst],dist[x]+t.snd);

8 }

9 forn(x,n)if(dist[x]!=INF)for(auto t:g[x]){

10 if(dist[t.fst]>dist[x]+t.snd){

11 // neg cycle: all nodes reachable from t.fst have -INF distance

12 // to reconstruct neg cycle: save "prev" of each node, go up from t.

fst until repeating a node. this node and all nodes between the

two occurences form a neg cycle

13 }

14 }

15 }

2.2 Floyd-Warshall

Universidad Nacional de Rosario - :$ CONTENTS - 2. GRAPHS Page 7 of 25

1 // g[i][j]: weight of edge (i, j) or INF if there’s no edge

2 // g[i][i]=0

3 ll g[MAXN][MAXN];int n;

4 void floyd(){ // O(n^3) . Replaces g with min distances

5 forn(k,n)forn(i,n)if(g[i][k]<INF)forn(j,n)if(g[k][j]<INF)

6 g[i][j]=min(g[i][j],g[i][k]+g[k][j]);

7 }

8 bool inNegCycle(int v){return g[v][v]<0;}

9 bool hasNegCycle(int a, int b){ // true iff there’s neg cycle in between

10 forn(i,n)if(g[a][i]<INF&&g[i][b]<INF&&g[i][i]<0)return true;

11 return false;

12 }

2.3 Strongly connected components (+ 2-SAT)

1 // MAXN: max number of nodes or 2 * max number of variables (2SAT)

2 bool truth[MAXN]; // truth[cmp[i]]=value of variable i (2SAT)

3 int nvar;int neg(int x){return MAXN-1-x;} // (2SAT)

4 vector<int> g[MAXN];

5 int n,lw[MAXN],idx[MAXN],qidx,cmp[MAXN],qcmp;

6 stack<int> st;

7 void tjn(int u){

8 lw[u]=idx[u]=++qidx;

9 st.push(u);cmp[u]=-2;

10 for(int v:g[u]){

11 if(!idx[v]||cmp[v]==-2){

12 if(!idx[v]) tjn(v);

13 lw[u]=min(lw[u],lw[v]);

14 }

15 }

16 if(lw[u]==idx[u]){

17 int x;

18 do{x=st.top();st.pop();cmp[x]=qcmp;}while(x!=u);

19 truth[qcmp]=(cmp[neg(u)]<0); // (2SAT)

20 qcmp++;

21 }

22 }

23 void scc(){

24 memset(idx,0,sizeof(idx));qidx=0;

25 memset(cmp,-1,sizeof(cmp));qcmp=0;

26 forn(i,n)if(!idx[i])tjn(i);

27 }

28 // Only for 2SAT:

29 void addor(int a, int b){g[neg(a)].pb(b);g[neg(b)].pb(a);}

30 bool satisf(int _nvar){

31 nvar=_nvar;n=MAXN;scc();

32 forn(i,nvar)if(cmp[i]==cmp[neg(i)])return false;

33 return true;

34 }

2.4 Articulation - Bridges - Biconnected

1 vector<int> g[MAXN];int n;

2 struct edge {int u,v,comp;bool bridge;};

3 vector<edge> e;

4 void add_edge(int u, int v){

5 g[u].pb(e.size());g[v].pb(e.size());

6 e.pb((edge){u,v,-1,false});

7 }

8 int D[MAXN],B[MAXN],T;

9 int nbc; // number of biconnected components

10 int art[MAXN]; // articulation point iff !=0

11 stack<int> st; // only for biconnected

12 void dfs(int u,int pe){

13 B[u]=D[u]=T++;

14 for(int ne:g[u])if(ne!=pe){

15 int v=e[ne].u^e[ne].v^u;

16 if(D[v]<0){

17 st.push(ne);dfs(v,ne);

18 if(B[v]>D[u])e[ne].bridge = true; // bridge

19 if(B[v]>=D[u]){

20 art[u]++; // articulation

21 int last; // start biconnected

22 do {

23 last=st.top();st.pop();

24 e[last].comp=nbc;

25 } while(last!=ne);

26 nbc++; // end biconnected

27 }

28 B[u]=min(B[u],B[v]);

29 }

30 else if(D[v]<D[u])st.push(ne),B[u]=min(B[u],D[v]);

31 }

32 }

33 void doit(){

34 memset(D,-1,sizeof(D));memset(art,0,sizeof(art));

35 nbc=T=0;

36 forn(i,n)if(D[i]<0)dfs(i,-1),art[i]--;

Universidad Nacional de Rosario - :$ CONTENTS - 2. GRAPHS Page 8 of 25

37 }

2.5 Chu-Liu (minimum spanning arborescence)

1 typedef ll tw;const tw INF=1LL<<60;

2 struct edge {int src,dst;tw w;};

3 struct ChuLiu {

4 int n,r;tw cost;bool found;

5 vector<int> no,pr,mark;

6 vector<vector<int> > comp,nx;

7 vector<tw> mcost;

8 vector<vector<edge> > h;

9 ChuLiu(int n):n(n),h(n){}

10 void add_edge(int x, int y, tw w){h[y].pb((edge){x,y,w});}

11 void visit(int v, int s){

12 if(mark[v]){

13 vector<int> temp=no;found=true;

14 do {

15 cost+=mcost[v];v=pr[v];

16 if(v!=s)while(comp[v].size()>0){

17 no[comp[v].back()]=s;

18 comp[s].pb(comp[v].back());

19 comp[v].pop_back();

20 }

21 }while(v!=s);

22 for(int j:comp[s])if(j!=r)for(edge& e:h[j])

23 if(no[e.src]!=s)e.w-=mcost[temp[j]];

24 }

25 mark[v]=true;

26 for(int i:nx[v])if(no[i]!=no[v]&&pr[no[i]]==v)

27 if(!mark[no[i]]||i==s)

28 visit(i,s);

29 }

30 tw doit(int _r){ // r: root (O(nm))

31 r=_r;

32 no.resize(n);comp.clear();comp.resize(n);

33 forn(x,n)comp[x].pb(no[x]=x);

34 for(cost=0;;){

35 pr.clear();pr.resize(n,-1);

36 mcost=vector<tw>(n,INF);

37 forn(j,n)if(j!=r)for(edge e:h[j])

38 if(no[e.src]!=no[j]&&e.w<mcost[no[j]])

39 mcost[no[j]]=e.w,pr[no[j]]=no[e.src];

40 nx.clear();nx.resize(n);

41 forn(x,n)if(pr[x]>=0)nx[pr[x]].pb(x);

42 bool stop=true;

43 mark.clear();mark.resize(n);

44 forn(x,n)if(x!=r&&!mark[x]&&!comp[x].empty()){

45 found=false;visit(x,x);

46 if(found)stop=false;

47 }

48 if(stop){

49 forn(x,n)if(pr[x]>=0)cost+=mcost[x];

50 return cost;

51 }

52 }

53 }

54 };

2.6 LCA - Binary Lifting

1 vector<int> g[1<<K];int n; // K such that 2^K>=n

2 int F[K][1<<K],D[1<<K];

3 void lca_dfs(int x){

4 for(int y:g[x]){if(y==F[0][x])continue;

5 F[0][y]=x;D[y]=D[x]+1;lca_dfs(y);

6 }

7 }

8 void lca_init(){

9 D[0]=0;F[0][0]=-1;

10 lca_dfs(0);

11 forr(k,1,K)forn(x,n)

12 if(F[k-1][x]<0)F[k][x]=-1;

13 else F[k][x]=F[k-1][F[k-1][x]];

14 }

15 int lca(int x, int y){

16 if(D[x]<D[y])swap(x,y);

17 for(int k=K-1;k>=0;--k)if(D[x]-(1<<k)>=D[y])x=F[k][x];

18 if(x==y)return x;

19 for(int k=K-1;k>=0;--k)if(F[k][x]!=F[k][y])x=F[k][x],y=F[k][y];

20 return F[0][x];

21 }

2.7 Heavy-Light decomposition

1 vector<int> g[MAXN];

2 int wg[MAXN],dad[MAXN],dep[MAXN]; // weight,father,depth

3 void dfs1(int x){

Universidad Nacional de Rosario - :$ CONTENTS - 2. GRAPHS Page 9 of 25

4 wg[x]=1;

5 for(int y:g[x])if(y!=dad[x]){

6 dad[y]=x;dep[y]=dep[x]+1;dfs1(y);

7 wg[x]+=wg[y];

8 }

9 }

10 int curpos,pos[MAXN],head[MAXN];

11 void hld(int x, int c){

12 if(c<0)c=x;

13 pos[x]=curpos++;head[x]=c;

14 int mx=-1;

15 for(int y:g[x])if(y!=dad[x]&&(mx<0||wg[mx]<wg[y]))mx=y;

16 if(mx>=0)hld(mx,c);

17 for(int y:g[x])if(y!=mx&&y!=dad[x])hld(y,-1);

18 }

19 void hld_init(){dad[0]=-1;dep[0]=0;dfs1(0);curpos=0;hld(0,-1);}

20 int query(int x, int y, STree& rmq){

21 int r=NEUT;

22 while(head[x]!=head[y]){

23 if(dep[head[x]]>dep[head[y]])swap(x,y);

24 r=oper(r,rmq.query(pos[head[y]],pos[y]+1));

25 y=dad[head[y]];

26 }

27 if(dep[x]>dep[y])swap(x,y); // now x is lca

28 r=oper(r,rmq.query(pos[x],pos[y]+1));

29 return r;

30 }

31 // for updating: rmq.upd(pos[x],v);

2.8 Centroid decomposition

1 vector<int> g[MAXN];int n;

2 bool tk[MAXN];

3 int fat[MAXN]; // father in centroid decomposition

4 int szt[MAXN]; // size of subtree

5 int calcsz(int x, int f){

6 szt[x]=1;

7 for(auto y:g[x])if(y!=f&&!tk[y])szt[x]+=calcsz(y,x);

8 return szt[x];

9 }

10 void cdfs(int x=0, int f=-1, int sz=-1){ // O(nlogn)

11 if(sz<0)sz=calcsz(x,-1);

12 for(auto y:g[x])if(!tk[y]&&szt[y]*2>=sz){

13 szt[x]=0;cdfs(y,f,sz);return;

14 }

15 tk[x]=true;fat[x]=f;

16 for(auto y:g[x])if(!tk[y])cdfs(y,x);

17 }

18 void centroid(){memset(tk,false,sizeof(tk));cdfs();}

2.9 Eulerian path

1 // Directed version (uncomment commented code for undirected)

2 struct edge {

3 int y;

4 // list<edge>::iterator rev;

5 edge(int y):y(y){}

6 };

7 list<edge> g[MAXN];

8 void add_edge(int a, int b){

9 g[a].push_front(edge(b));//auto ia=g[a].begin();

10 // g[b].push_front(edge(a));auto ib=g[b].begin();

11 // ia->rev=ib;ib->rev=ia;

12 }

13 vector<int> p;

14 void go(int x){

15 while(g[x].size()){

16 int y=g[x].front().y;

17 //g[y].erase(g[x].front().rev);

18 g[x].pop_front();

19 go(y);

20 }

21 p.push_back(x);

22 }

23 vector<int> get_path(int x){ // get a path that begins in x

24 // check that a path exists from x before calling to get_path!

25 p.clear();go(x);reverse(p.begin(),p.end());

26 return p;

27 }

2.10 Dynamic connectivity

1 struct UnionFind {

2 int n,comp;

3 vector<int> uf,si,c;

4 UnionFind(int n=0):n(n),comp(n),uf(n),si(n,1){

5 forn(i,n)uf[i]=i;}

6 int find(int x){return x==uf[x]?x:find(uf[x]);}

Universidad Nacional de Rosario - :$ CONTENTS - 2. GRAPHS Page 10 of 25

7 bool join(int x, int y){

8 if((x=find(x))==(y=find(y)))return false;

9 if(si[x]<si[y])swap(x,y);

10 si[x]+=si[y];uf[y]=x;comp--;c.pb(y);

11 return true;

12 }

13 int snap(){return c.size();}

14 void rollback(int snap){

15 while(c.size()>snap){

16 int x=c.back();c.pop_back();

17 si[uf[x]]-=si[x];uf[x]=x;comp++;

18 }

19 }

20 };

21 enum {ADD,DEL,QUERY};

22 struct Query {int type,x,y;};

23 struct DynCon {

24 vector<Query> q;

25 UnionFind dsu;

26 vector<int> mt;

27 map<pair<int,int>,int> last;

28 DynCon(int n):dsu(n){}

29 void add(int x, int y){

30 if(x>y)swap(x,y);

31 q.pb((Query){ADD,x,y});mt.pb(-1);last[mp(x,y)]=q.size()-1;

32 }

33 void remove(int x, int y){ // the edge to remove must exist

34 if(x>y)swap(x,y);

35 q.pb((Query){DEL,x,y});

36 int pr=last[mp(x,y)];mt[pr]=q.size()-1;mt.pb(pr);

37 }

38 void query(){q.pb((Query){QUERY,-1,-1});mt.pb(-1);}

39 void process(){ // answers all queries in order

40 if(!q.size())return;

41 forn(i,q.size())if(q[i].type==ADD&&mt[i]<0)mt[i]=q.size();

42 go(0,q.size());

43 }

44 void go(int s, int e){

45 if(s+1==e){

46 if(q[s].type==QUERY) // answer query using DSU

47 printf("%d\n",dsu.comp);

48 return;

49 }

50 int k=dsu.snap(),m=(s+e)/2;

51 for(int i=e-1;i>=m;--i)if(mt[i]>=0&&mt[i]<s)dsu.join(q[i].x,q[i].y);

52 go(s,m);dsu.rollback(k);

53 for(int i=m-1;i>=s;--i)if(mt[i]>=e)dsu.join(q[i].x,q[i].y);

54 go(m,e);dsu.rollback(k);

55 }

56 };

2.11 Edmond’s blossom (matching in general graphs)

1 vector<int> g[MAXN];

2 int n,m,mt[MAXN],qh,qt,q[MAXN],ft[MAXN],bs[MAXN];

3 bool inq[MAXN],inb[MAXN],inp[MAXN];

4 int lca(int root, int x, int y){

5 memset(inp,0,sizeof(inp));

6 while(1){

7 inp[x=bs[x]]=true;

8 if(x==root)break;

9 x=ft[mt[x]];

10 }

11 while(1){

12 if(inp[y=bs[y]])return y;

13 else y=ft[mt[y]];

14 }

15 }

16 void mark(int z, int x){

17 while(bs[x]!=z){

18 int y=mt[x];

19 inb[bs[x]]=inb[bs[y]]=true;

20 x=ft[y];

21 if(bs[x]!=z)ft[x]=y;

22 }

23 }

24 void contr(int s, int x, int y){

25 int z=lca(s,x,y);

26 memset(inb,0,sizeof(inb));

27 mark(z,x);mark(z,y);

28 if(bs[x]!=z)ft[x]=y;

29 if(bs[y]!=z)ft[y]=x;

30 forn(x,n)if(inb[bs[x]]){

31 bs[x]=z;

32 if(!inq[x])inq[q[++qt]=x]=true;

33 }

34 }

Universidad Nacional de Rosario - :$ CONTENTS - 3. MATH Page 11 of 25

35 int findp(int s){

36 memset(inq,0,sizeof(inq));

37 memset(ft,-1,sizeof(ft));

38 forn(i,n)bs[i]=i;

39 inq[q[qh=qt=0]=s]=true;

40 while(qh<=qt){

41 int x=q[qh++];

42 for(int y:g[x])if(bs[x]!=bs[y]&&mt[x]!=y){

43 if(y==s||mt[y]>=0&&ft[mt[y]]>=0)contr(s,x,y);

44 else if(ft[y]<0){

45 ft[y]=x;

46 if(mt[y]<0)return y;

47 else if(!inq[mt[y]])inq[q[++qt]=mt[y]]=true;

48 }

49 }

50 }

51 return -1;

52 }

53 int aug(int s, int t){

54 int x=t,y,z;

55 while(x>=0){

56 y=ft[x];

57 z=mt[y];

58 mt[y]=x;mt[x]=y;

59 x=z;

60 }

61 return t>=0;

62 }

63 int edmonds(){ // O(n^2 m)

64 int r=0;

65 memset(mt,-1,sizeof(mt));

66 forn(x,n)if(mt[x]<0)r+=aug(x,findp(x));

67 return r;

68 }

3 Math

3.1 Identities

Cn = 2(2n−1)
n+1 Cn−1

Cn = 1
n+1

(
2n
n

)
Cn ∼ 4n

n3/2
√
π

σ(n) = O(log(log(n))) (number of divisors of n)
F2n+1 = F 2

n + F 2
n+1

F2n = F 2
n+1 − F 2

n−1∑n
i=1 Fi = Fn+2 − 1

Fn+iFn+j − FnFn+i+j = (−1)nFiFj
(Möbius Inv. Formula) Let g(n) =

∑
d|n f(d), then f(n) =

∑
d | ng(d)µ

(
n
d)
)
.

3.2 Theorems

1 (Tutte) A graph, G = (V, E), has a perfect matching if and only if for

every subset U of V, the subgraph induced by V - U has at most |U|

connected components with an odd number of vertices.

2 Petersens Theorem. Every cubic, bridgeless graph contains a perfect

matching.

3 (Dilworth) In any finite partially ordered set, the maximum number of

elements in any antichain equals the minimum number of chains in any

partition of the set into chains

4 Pick: A=I+B/2-1 (area of polygon, points inside, points on border)

3.3 Integer floor division

1 void floordiv(ll x, ll y, ll& q, ll& r) { // (for negative x)

2 q=x/y;r=x%y;

3 if((r!=0)&&((r<0)!=(y<0)))q--,r+=y;

4 }

3.4 Extended Euclid

1 ll euclid(ll a, ll b, ll& x, ll& y){ // a*(x+k*(b/d))+b*(y-k*(a/d))=d

2 if(!b){x=1;y=0;return a;} // (for any k)

3 ll d=euclid(b,a%b,x,y);

4 ll t=y;y=x-(a/b)*y;x=t;

5 return d;

6 }

3.5 Pollard’s rho

1 ll gcd(ll a, ll b){return a?gcd(b%a,a):b;}

2 ull mulmod(ull a, ull b, ull m){ // 0 <= a, b < m

3 long double x; ull c; ll r;

4 x = a; c = x * b / m;

5 r = (ll)(a * b - c * m) % (ll)m;

6 return r < 0 ? r + m : r;

7 }

8 ll expmod(ll b, ll e, ll m){

9 if(!e)return 1;

10 ll q=expmod(b,e/2,m);q=mulmod(q,q,m);

11 return e&1?mulmod(b,q,m):q;

Universidad Nacional de Rosario - :$ CONTENTS - 3. MATH Page 12 of 25

12 }

13 bool is_prime_prob(ll n, int a){

14 if(n==a)return true;

15 ll s=0,d=n-1;

16 while(d%2==0)s++,d/=2;

17 ll x=expmod(a,d,n);

18 if((x==1)||(x+1==n))return true;

19 forn(_,s-1){

20 x=mulmod(x,x,n);

21 if(x==1)return false;

22 if(x+1==n)return true;

23 }

24 return false;

25 }

26 bool rabin(ll n){ // true iff n is prime

27 if(n==1)return false;

28 int ar[]={2,3,5,7,11,13,17,19,23};

29 forn(i,9)if(!is_prime_prob(n,ar[i]))return false;

30 return true;

31 }

32 ll rho(ll n){

33 if(!(n&1))return 2;

34 ll x=2,y=2,d=1;

35 ll c=rand()%n+1;

36 while(d==1){

37 x=(mulmod(x,x,n)+c)%n;

38 y=(mulmod(y,y,n)+c)%n;

39 y=(mulmod(y,y,n)+c)%n;

40 if(x>=y)d=gcd(x-y,n);

41 else d=gcd(y-x,n);

42 }

43 return d==n?rho(n):d;

44 }

45 void fact(ll n, map<ll,int>& f){ //O (lg n)^3

46 if(n==1)return;

47 if(rabin(n)){f[n]++;return;}

48 ll q=rho(n);fact(q,f);fact(n/q,f);

49 }

3.6 Simpson’s rule

1 double integrate(double f(double), double a, double b, int n=10000){

2 double r=0,h=(b-a)/n,fa=f(a),fb;

3 forn(i,n){

4 fb=f(a+h*(i+1));

5 r+=fa+4*f(a+h*(i+0.5))+fb;fa=fb;

6 }

7 return r*h/6.;

8 }

3.7 Polynomials

1 typedef int tp; // type of polynomial

2 template<class T=tp>

3 struct poly { // poly<> : 1 variable, poly<poly<>>: 2 variables, etc.

4 vector<T> c;

5 T& operator[](int k){return c[k];}

6 poly(vector<T>& c):c(c){}

7 poly(initializer_list<T> c):c(c){}

8 poly(int k):c(k){}

9 poly(){}

10 poly operator+(poly<T> o){

11 int m=c.size(),n=o.c.size();

12 poly res(max(m,n));

13 forn(i,m)res[i]=res[i]+c[i];

14 forn(i,n)res[i]=res[i]+o.c[i];

15 return res;

16 }

17 poly operator*(tp k){

18 poly res(c.size());

19 forn(i,c.size())res[i]=c[i]*k;

20 return res;

21 }

22 poly operator*(poly o){

23 int m=c.size(),n=o.c.size();

24 poly res(m+n-1);

25 forn(i,m)forn(j,n)res[i+j]=res[i+j]+c[i]*o.c[j];

26 return res;

27 }

28 poly operator-(poly<T> o){return *this+(o*-1);}

29 T operator()(tp v){

30 T sum(0);

31 for(int i=c.size()-1;i>=0;--i)sum=sum*v+c[i];

32 return sum;

33 }

34 };

35 // example: p(x,y)=2*x^2+3*x*y-y+4

36 // poly<poly<>> p={{4,-1},{0,3},{2}}

Universidad Nacional de Rosario - :$ CONTENTS - 3. MATH Page 13 of 25

37 // printf("%d\n",p(2)(3)) // 27 (p(2,3))

38 set<tp> roots(poly<> p){ // only for integer polynomials

39 set<tp> r;

40 while(!p.c.empty()&&!p.c.back())p.c.pop_back();

41 if(!p(0))r.insert(0);

42 if(p.c.empty())return r;

43 tp a0=0,an=abs(p[p.c.size()-1]);

44 for(int k=0;!a0;a0=abs(p[k++]));

45 vector<tp> ps,qs;

46 forr(i,1,sqrt(a0)+1)if(a0%i==0)ps.pb(i),ps.pb(a0/i);

47 forr(i,1,sqrt(an)+1)if(an%i==0)qs.pb(i),qs.pb(an/i);

48 for(auto pt:ps)for(auto qt:qs)if(pt%qt==0){

49 tp x=pt/qt;

50 if(!p(x))r.insert(x);

51 if(!p(-x))r.insert(-x);

52 }

53 return r;

54 }

55 pair<poly<>,tp> ruffini(poly<> p, tp r){ // returns pair (result,rem)

56 int n=p.c.size()-1;

57 vector<tp> b(n);

58 b[n-1]=p[n];

59 for(int k=n-2;k>=0;--k)b[k]=p[k+1]+r*b[k+1];

60 return mp(poly<>(b),p[0]+r*b[0]);

61 }

62 // only for double polynomials

63 pair<poly<>,poly<> > polydiv(poly<> p, poly<> q){ // returns pair (result,

rem)

64 int n=p.c.size()-q.c.size()+1;

65 vector<tp> b(n);

66 for(int k=n-1;k>=0;--k){

67 b[k]=p.c.back()/q.c.back();

68 forn(i,q.c.size())p[i+k]-=b[k]*q[i];

69 p.c.pop_back();

70 }

71 while(!p.c.empty()&&abs(p.c.back())<EPS)p.c.pop_back();

72 return mp(poly<>(b),p);

73 }

74 // only for double polynomials

75 poly<> interpolate(vector<tp> x, vector<tp> y){ //TODO TEST

76 poly<> q={1},S={0};

77 for(tp a:x)q=poly<>({-a,1})*q;

78 forn(i,x.size()){

79 poly<> Li=ruffini(q,x[i]).fst;

80 Li=Li*(1.0/Li(x[i])); // change for int polynomials

81 S=S+Li*y[i];

82 }

83 return S;

84 }

3.8 Bairstow

1 double pget(poly<>& p, int k){return k<p.c.size()?p[k]:0;}

2 poly<> bairstow(poly<> p){ // returns polynomial of degree 2 that

3 int n=p.c.size()-1; // divides p

4 assert(n>=3&&abs(p.c.back())>EPS);

5 double u=p[n-1]/p[n],v=p[n-2]/p[n];

6 forn(_,ITER){

7 auto w=polydiv(p,{v,u,1});

8 poly<> q=w.fst,r0=w.snd;

9 poly<> r1=polydiv(q,{v,u,1}).snd;

10 double c=pget(r0,1),d=pget(r0,0),g=pget(r1,1),h=pget(r1,0);

11 double det=1/(v*g*g+h*(h-u*g)),uu=u;

12 u-=det*(-h*c+g*d);v-=det*(-g*v*c+(g*uu-h)*d);

13

14 }

15 return {v,u,1};

16 }

17 void addr(vector<double>& r, poly<>& p){

18 assert(p.c.size()<=3);

19 if(p.c.size()<=1)return;

20 if(p.c.size()==2)r.pb(-p[0]/p[1]);

21 if(p.c.size()==3){

22 double a=p[2],b=p[1],c=p[0];

23 double d=b*b-4*a*c;

24 if(d<-0.1)return; // huge epsilon because of bad precision

25 d=d>0?sqrt(d):0;r.pb((-b-d)/2/a);r.pb((-b+d)/2/a);

26 }

27 }

28 vector<double> roots(poly<> p){

29 while(!p.c.empty()&&abs(p.c.back())<EPS)p.c.pop_back();

30 forn(i,p.c.size())p[i]/=p.c.back();

31 vector<double> r;int n;

32 while((n=p.c.size()-1)>=3){

33 poly<> q=bairstow(p);addr(r,q);

34 p=polydiv(p,q).fst;

35 while(p.c.size()>n-1)p.c.pop_back();

Universidad Nacional de Rosario - :$ CONTENTS - 3. MATH Page 14 of 25

36 }

37 addr(r,p);

38 return r;

39 }

3.9 Fast Fourier Transform

1 struct CD { // or typedef complex<double> CD; (but 4x slower)

2 double r,i;

3 CD(double r=0, double i=0):r(r),i(i){}

4 void operator/=(const int c){r/=c, i/=c;}

5 };

6 CD operator*(const CD& a, const CD& b){

7 return CD(a.r*b.r-a.i*b.i,a.r*b.i+a.i*b.r);}

8 CD operator+(const CD& a, const CD& b){return CD(a.r+b.r,a.i+b.i);}

9 CD operator-(const CD& a, const CD& b){return CD(a.r-b.r,a.i-b.i);}

10 const double pi=acos(-1.0);

11 CD cp1[MAXN+9],cp2[MAXN+9],w[MAXN+9]; // MAXN must be power of 2 !!

12 int R[MAXN+9];

13 void dft(CD* a, int n, bool inv){

14 forn(i,n)if(R[i]<i)swap(a[R[i]],a[i]);

15 for(int m=2;m<=n;m*=2){

16 double z=2*pi/m*(inv?-1:1);

17 CD wi=CD(cos(z),sin(z));

18 for(int j=0;j<n;j+=m){

19 w[0]=1;

20 for(int k=j,k2=j+m/2,t=1;k2<j+m;k++,k2++,t++){

21 CD u=a[k];CD v=a[k2]*w[t-1];a[k]=u+v;a[k2]=u-v;

22 w[t]=t%2?wi*w[t-1]:w[t/2]*w[t/2];

23 }

24 }

25 }

26 if(inv)forn(i,n)a[i]/=n;

27 }

28 vector<int> multiply(vector<int>& p1, vector<int>& p2){

29 int n=p1.size()+p2.size()+1;

30 int m=1,cnt=0;

31 while(m<=n)m+=m,cnt++;

32 forn(i,m){R[i]=0;forn(j,cnt)R[i]=(R[i]<<1)|((i>>j)&1);}

33 forn(i,m)cp1[i]=0,cp2[i]=0;

34 forn(i,p1.size())cp1[i]=p1[i];

35 forn(i,p2.size())cp2[i]=p2[i];

36 dft(cp1,m,false);dft(cp2,m,false);

37 forn(i,m)cp1[i]=cp1[i]*cp2[i];

38 dft(cp1,m,true);

39 vector<int> res;

40 n-=2;

41 forn(i,n)res.pb((ll)floor(cp1[i].r+0.5));

42 return res;

43 }

3.10 Fast Hadamard Transform

1 ll c1[MAXN+9],c2[MAXN+9]; // MAXN must be power of 2 !!

2 void fht(ll* p, int n, bool inv){

3 for(int l=1;2*l<=n;l*=2){

4 for(int i=0;i<n;i+=2*l){

5 forn(j,l){

6 ll u=p[i+j],v=p[i+l+j];

7 // XOR

8 if(!inv)p[i+j]=u+v,p[i+l+j]=u-v;

9 else p[i+j]=(u+v)/2,p[i+l+j]=(u-v)/2;

10 // AND

11 //if(!inv)p[i+j]=v,p[i+l+j]=u+v;

12 //else p[i+j]=-u+v,p[i+l+j]=u;

13 // OR

14 //if(!inv)p[i+j]=u+v,p[i+l+j]=u;

15 //else p[i+j]=v,p[i+l+j]=u-v;

16 }

17 }

18 }

19 }

20 // like polynomial multiplication, but XORing exponents

21 // instead of adding them (also ANDing, ORing)

22 vector<ll> multiply(vector<ll>& p1, vector<ll>& p2){

23 int n=1<<(32-__builtin_clz(max(sz(p1),sz(p2))-1));

24 forn(i,n)c1[i]=0,c2[i]=0;

25 forn(i,sz(p1))c1[i]=p1[i];

26 forn(i,sz(p2))c2[i]=p2[i];

27 fht(c1,n,false);fht(c2,n,false);

28 forn(i,n)c1[i]*=c2[i];

29 fht(c1,n,true);

30 return vector<ll>(c1,c1+n);

31 }

3.11 Karatsuba

1 typedef ll tp;

Universidad Nacional de Rosario - :$ CONTENTS - 3. MATH Page 15 of 25

2 #define add(n,s,d,k) forn(i,n)(d)[i]+=(s)[i]*k

3 tp* ini(int n){tp *r=new tp[n];fill(r,r+n,0);return r;}

4 void karatsura(int n, tp* p, tp* q, tp* r){

5 if(n<=0)return;

6 if(n<35)forn(i,n)forn(j,n)r[i+j]+=p[i]*q[j];

7 else {

8 int nac=n/2,nbd=n-n/2;

9 tp *a=p,*b=p+nac,*c=q,*d=q+nac;

10 tp *ab=ini(nbd+1),*cd=ini(nbd+1),*ac=ini(nac*2),*bd=ini(nbd*2);

11 add(nac,a,ab,1);add(nbd,b,ab,1);

12 add(nac,c,cd,1);add(nbd,d,cd,1);

13 karatsura(nac,a,c,ac);karatsura(nbd,b,d,bd);

14 add(nac*2,ac,r+nac,-1);

15 add(nbd*2,bd,r+nac,-1);

16 add(nac*2,ac,r,1);

17 add(nbd*2,bd,r+nac*2,1);

18 karatsura(nbd+1,ab,cd,r+nac);

19 free(ab);free(cd);free(ac);free(bd);

20 }

21 }

22 vector<tp> multiply(vector<tp> p0, vector<tp> p1){

23 int n=max(p0.size(),p1.size());

24 tp *p=ini(n),*q=ini(n),*r=ini(2*n);

25 forn(i,p0.size())p[i]=p0[i];

26 forn(i,p1.size())q[i]=p1[i];

27 karatsura(n,p,q,r);

28 vector<tp> rr(r,r+p0.size()+p1.size()-1);

29 free(p);free(q);free(r);

30 return rr;

31 }

3.12 Modular inverse

1 inv[1]=1; //O(MAXN), i*inv[i] = 1 mod p, MAXN <= p

2 forr(i, 2, MAXN) inv[i]=p-((ll)(p/i)*inv[p%i])%p;

3.13 Chinese remainder theorem (Euge)

1 #define mod(a, m) (((a)%m + m)%m)

2 struct Meq { // requires euclid, inv, mulmod (from pollard rho)

3 ll a, b, m; // a*x = b (mod m)

4 Meq(ll a = 0, ll b = 0, ll m = 0): a(a), b(b), m(m){}

5 bool norm(){ // returns false if equation is not consistent

6 a = mod(a, m); b = mod(b, m);

7 ll g = __gcd(a, m); if(b%g) return false;

8 a/=g; b/=g; m/=g; b = b*inv(a, m)%m; a = 1;

9 return true;

10 }

11 };

12 Meq Euge(Meq S, Meq T){ // Requires S, T to be normalized first

13 ll x, y, g = euclid(S.m, -T.m, x, y);

14 if(g < 0) x *= -1, y *= -1, g *= -1;

15 if((S.b - T.b)%g) return Meq(); // returns m = 0 if not consistent

16 ll M = S.m * (T.m/g), r = (T.b - S.b)/g;

17 x = mulmod(x, r, M);

18 ll A = mod(mulmod(S.m, x, M) + S.b, M);

19 return Meq(1, A, M);

20 }

3.14 Mobius

1 short mu[MAXN] = {0,1};

2 void mobius(){

3 forr(i,1,MAXN)if(mu[i])for(int j=i+i;j<MAXN;j+=i)mu[j]-=mu[i];

4 }

3.15 Linear Recurrence

1 struct LRec{

2 int n; vector<int> In, T; vector<vector<int>> B;

3 vector<int> add(vector<int> &a, vector<int> &b){

4 vector<int> ans(2*n+1, 0);

5 forn(i, n+1)forn(j, n+1)

6 ans[i+j] = (ans[i+j] + (ll)a[i]*b[j]%MOD + MOD)%MOD;

7 for(int i = 2*n; i > n; i--)forn(j, n)

8 ans[i-1-j] = (ans[i-1-j] + (ll)ans[i]*T[j]%MOD + MOD)%MOD;

9 ans.resize(n+1); return ans; }

10 LRec(vector<int> V, vector<int> T): In(V), T(T){

11 n = sz(V);

12 vector<int> a(n+1, 0);

13 a[1] = 1; B.pb(a);

14 forr(i, 1, LOG) B.pb(add(B[i-1], B[i-1])); }

15 int calc(ll k){

16 vector<int> a(n+1, 0); a[0] = 1;

17 forn(i, LOG)if(k>>i&1)a = add(a, B[i]);

18 int ret = 0;

19 forn(i, n)ret = (ret + (ll)a[i+1]*In[i]%MOD + MOD)%MOD;

20 return ret; }

21 };

Universidad Nacional de Rosario - :$ CONTENTS - 4. GEOMETRY Page 16 of 25

3.16 Gaussian Elimination

1 double reduce(vector<vector<double> >& x){ // returns determinant

2 int n=x.size(),m=x[0].size();

3 int i=0,j=0;double r=1.;

4 while(i<n&&j<m){

5 int l=i;

6 forr(k,i+1,n)if(abs(x[k][j])>abs(x[l][j]))l=k;

7 if(abs(x[l][j])<EPS){j++;r=0.;continue;}

8 if(l!=i){r=-r;swap(x[i],x[l]);}

9 r*=x[i][j];

10 for(int k=m-1;k>=j;k--)x[i][k]/=x[i][j];

11 forn(k,n){

12 if(k==i)continue;

13 for(int l=m-1;l>=j;l--)x[k][l]-=x[k][j]*x[i][l];

14 }

15 i++;j++;

16 }

17 return r;

18 }

3.17 Simplex

1 vector<int> X,Y;

2 vector<vector<double> > A;

3 vector<double> b,c;

4 double z;

5 int n,m;

6 void pivot(int x,int y){

7 swap(X[y],Y[x]);

8 b[x]/=A[x][y];

9 forn(i,m)if(i!=y)A[x][i]/=A[x][y];

10 A[x][y]=1/A[x][y];

11 forn(i,n)if(i!=x&&abs(A[i][y])>EPS){

12 b[i]-=A[i][y]*b[x];

13 forn(j,m)if(j!=y)A[i][j]-=A[i][y]*A[x][j];

14 A[i][y]=-A[i][y]*A[x][y];

15 }

16 z+=c[y]*b[x];

17 forn(i,m)if(i!=y)c[i]-=c[y]*A[x][i];

18 c[y]=-c[y]*A[x][y];

19 }

20 pair<double,vector<double> > simplex(// maximize c^T x s.t. Ax<=b, x>=0

21 vector<vector<double> > _A, vector<double> _b, vector<double> _c){

22 // returns pair (maximum value, solution vector)

23 A=_A;b=_b;c=_c;

24 n=b.size();m=c.size();z=0.;

25 X=vector<int>(m);Y=vector<int>(n);

26 forn(i,m)X[i]=i;

27 forn(i,n)Y[i]=i+m;

28 while(1){

29 int x=-1,y=-1;

30 double mn=-EPS;

31 forn(i,n)if(b[i]<mn)mn=b[i],x=i;

32 if(x<0)break;

33 forn(i,m)if(A[x][i]<-EPS){y=i;break;}

34 assert(y>=0); // no solution to Ax<=b

35 pivot(x,y);

36 }

37 while(1){

38 double mx=EPS;

39 int x=-1,y=-1;

40 forn(i,m)if(c[i]>mx)mx=c[i],y=i;

41 if(y<0)break;

42 double mn=1e200;

43 forn(i,n)if(A[i][y]>EPS&&b[i]/A[i][y]<mn)mn=b[i]/A[i][y],x=i;

44 assert(x>=0); // c^T x is unbounded

45 pivot(x,y);

46 }

47 vector<double> r(m);

48 forn(i,n)if(Y[i]<m)r[Y[i]]=b[i];

49 return mp(z,r);

50 }

4 Geometry

4.1 Point

1 bool left(pt p, pt q){ // is it to the left of directed line pq?

2 return (q-p)%(*this-p)>EPS;}

3 pt rot(pt r){return pt(*this%r,*this*r);}

4 pt rot(double a){return rot(pt(sin(a),cos(a)));}

5 pt ccw90(1,0); pt cw90(-1,0);

4.2 Line

1 int sgn2(double x){return x<0?-1:1;}

2 struct ln {

3 pt p,pq;

Universidad Nacional de Rosario - :$ CONTENTS - 4. GEOMETRY Page 17 of 25

4 ln(pt p, pt q):p(p),pq(q-p){}

5 ln(){}

6 bool has(pt r){return dist(r)<EPS;}

7 bool seghas(pt r){return has(r)&&(r-p)*(r-(p+pq))-EPS<0;}

8 // bool operator /(ln l){return (pq.unit()^l.pq.unit()).norm()<EPS;} // 3D

9 bool operator/(ln l){return abs(pq.unit()%l.pq.unit())<EPS;} // 2D

10 bool operator==(ln l){return *this/l&&has(l.p);}

11 pt operator^(ln l){ // intersection

12 if(*this/l)return pt(DINF,DINF);

13 pt r=l.p+l.pq*((p-l.p)%pq/(l.pq%pq));

14 // if(!has(r)){return pt(NAN,NAN,NAN);} // check only for 3D

15 return r;

16 }

17 double angle(ln l){return pq.angle(l.pq);}

18 int side(pt r){return has(r)?0:sgn2(pq%(r-p));} // 2D

19 pt proj(pt r){return p+pq*((r-p)*pq/pq.norm2());}

20 pt ref(pt r){return proj(r)*2-r;}

21 double dist(pt r){return (r-proj(r)).norm();}

22 // double dist(ln l){ // only 3D

23 // if(*this/l)return dist(l.p);

24 // return abs((l.p-p)*(pq^l.pq))/(pq^l.pq).norm();

25 // }

26 ln rot(auto a){return ln(p,p+pq.rot(a));} // 2D

27 };

28 ln bisector(ln l, ln m){ // angle bisector

29 pt p=l^m;

30 return ln(p,p+l.pq.unit()+m.pq.unit());

31 }

32 ln bisector(pt p, pt q){ // segment bisector (2D)

33 return ln((p+q)*.5,p).rot(ccw90);

34 }

4.3 Circle

1 struct circle {

2 pt o;double r;

3 circle(pt o, double r):o(o),r(r){}

4 circle(pt x, pt y, pt z){o=bisector(x,y)^bisector(x,z);r=(o-x).norm();}

5 vector<pt> operator^(circle c){ // ccw

6 vector<pt> s;

7 double d=(o-c.o).norm();

8 if(d>r+c.r+EPS||d+min(r,c.r)+EPS<max(r,c.r))return s;

9 double x=(d*d-c.r*c.r+r*r)/(2*d);

10 double y=sqrt(r*r-x*x);

11 pt v=(c.o-o)/d;

12 s.pb(o+v*x-v.rot(ccw90)*y);

13 if(y>EPS)s.pb(o+v*x+v.rot(ccw90)*y);

14 return s;

15 }

16 vector<pt> operator^(ln l){

17 vector<pt> s;

18 pt p=l.proj(o);

19 double d=(p-o).norm();

20 if(d-EPS>r)return s;

21 if(abs(d-r)<EPS){s.pb(p);return s;}

22 d=sqrt(r*r-d*d);

23 s.pb(p+l.pq.unit()*d);

24 s.pb(p-l.pq.unit()*d);

25 return s;

26 }

27 vector<pt> tang(pt p){

28 double d=sqrt((p-o).norm2()-r*r);

29 return *this^circle(p,d);

30 }

31 double intertriangle(pt a, pt b){ // area of intersection with oab

32 if(abs((o-a)%(o-b))<EPS)return 0.;

33 vector<pt> q={a},w=*this^ln(a,b);

34 if(w.size()==2)for(auto p:w)if((a-p)*(b-p)<-EPS)q.pb(p);

35 q.pb(b);

36 if(q.size()==4&&(q[0]-q[1])*(q[2]-q[1])>EPS)swap(q[1],q[2]);

37 double s=0;

38 forn(i,q.size()-1){

39 if(!has(q[i])||!has(q[i+1]))s+=r*r*(q[i]-o).angle(q[i+1]-o)/2;

40 else s+=abs((q[i]-o)%(q[i+1]-o)/2);

41 }

42 return s;

43 }

44 };

45 vector<double> intercircles(vector<circle> c){

46 vector<double> r(sz(c)+1); // r[k]: area covered by at least k circles

47 forn(i,sz(c)){ // O(n^2 log n) (high constant)

48 int k=1;Cmp s(c[i].o);

49 vector<pair<pt,int> > p={

50 mp(c[i].o+pt(1,0)*c[i].r,0),

51 mp(c[i].o-pt(1,0)*c[i].r,0)};

52 forn(j,sz(c))if(j!=i){

53 bool b0=c[i].in(c[j]),b1=c[j].in(c[i]);

Universidad Nacional de Rosario - :$ CONTENTS - 4. GEOMETRY Page 18 of 25

54 if(b0&&(!b1||i<j))k++;

55 else if(!b0&&!b1){

56 auto v=c[i]^c[j];

57 if(sz(v)==2){

58 p.pb(mp(v[0],1));p.pb(mp(v[1],-1));

59 if(s(v[1],v[0]))k++;

60 }

61 }

62 }

63 sort(p.begin(),p.end(),

64 [&](pair<pt,int> a, pair<pt,int> b){return s(a.fst,b.fst);});

65 forn(j,sz(p)){

66 pt p0=p[j?j-1:sz(p)-1].fst,p1=p[j].fst;

67 double a=(p0-c[i].o).angle(p1-c[i].o);

68 r[k]+=(p0.x-p1.x)*(p0.y+p1.y)/2+c[i].r*c[i].r*(a-sin(a))/2;

69 k+=p[j].snd;

70 }

71 }

72 return r;

73 }

4.4 Polygon

1 int sgn(double x){return x<-EPS?-1:x>EPS;}

2 struct pol {

3 int n;vector<pt> p;

4 pol(){}

5 pol(vector<pt> _p){p=_p;n=p.size();}

6 bool has(pt q){ // O(n)

7 forn(i,n)if(ln(p[i],p[(i+1)%n]).seghas(q))return true;

8 int cnt=0;

9 forn(i,n){

10 int j=(i+1)%n;

11 int k=sgn((q-p[j])%(p[i]-p[j]));

12 int u=sgn(p[i].y-q.y),v=sgn(p[j].y-q.y);

13 if(k>0&&u<0&&v>=0)cnt++;

14 if(k<0&&v<0&&u>=0)cnt--;

15 }

16 return cnt!=0;

17 }

18 void normalize(){ // (call before haslog, remove collinear first)

19 if(p[2].left(p[0],p[1]))reverse(p.begin(),p.end());

20 int pi=min_element(p.begin(),p.end())-p.begin();

21 vector<pt> s(n);

22 forn(i,n)s[i]=p[(pi+i)%n];

23 p.swap(s);

24 }

25 bool haslog(pt q){ // O(log(n)) only CONVEX. Call normalize first

26 if(q.left(p[0],p[1])||q.left(p.back(),p[0]))return false;

27 int a=1,b=p.size()-1; // returns true if point on boundary

28 while(b-a>1){ // (change sign of EPS in left

29 int c=(a+b)/2; // to return false in such case)

30 if(!q.left(p[0],p[c]))a=c;

31 else b=c;

32 }

33 return !q.left(p[a],p[a+1]);

34 }

35 pt farthest(pt v){ // O(log(n)) only CONVEX

36 if(n<10){

37 int k=0;

38 forr(i,1,n)if(v*(p[i]-p[k])>EPS)k=i;

39 return p[k];

40 }

41 if(n==sz(p))p.pb(p[0]);

42 pt a=p[1]-p[0];

43 int s=0,e=n,ua=v*a>EPS;

44 if(!ua&&v*(p[n-1]-p[0])<=EPS)return p[0];

45 while(1){

46 int m=(s+e)/2;pt c=p[m+1]-p[m];

47 int uc=v*c>EPS;

48 if(!uc&&v*(p[m-1]-p[m])<=EPS)return p[m];

49 if(ua&&(!uc||v*(p[s]-p[m])>EPS))e=m;

50 else if(ua||uc||v*(p[s]-p[m])>=-EPS)s=m,a=c,ua=uc;

51 else e=m;

52 assert(e>s+1);

53 }

54 }

55 pol cut(ln l){ // cut CONVEX polygon by line l

56 vector<pt> q; // returns part at left of l.pq

57 forn(i,n){

58 int d0=sgn(l.pq%(p[i]-l.p)),d1=sgn(l.pq%(p[(i+1)%n]-l.p));

59 if(d0>=0)q.pb(p[i]);

60 ln m(p[i],p[(i+1)%n]);

61 if(d0*d1<0&&!(l/m))q.pb(l^m);

62 }

63 return pol(q);

64 }

Universidad Nacional de Rosario - :$ CONTENTS - 5. STRINGS Page 19 of 25

65 double intercircle(circle c){ // area of intersection with circle

66 double r=0.;

67 forn(i,n){

68 int j=(i+1)%n;double w=c.intertriangle(p[i],p[j]);

69 if((p[j]-c.o)%(p[i]-c.o)>0)r+=w;

70 else r-=w;

71 }

72 return abs(r);

73 }

74 double callipers(){ // square distance of most distant points

75 double r=0; // prereq: convex, ccw, NO COLLINEAR POINTS

76 for(int i=0,j=n<2?0:1;i<j;++i){

77 for(;;j=(j+1)%n){

78 r=max(r,(p[i]-p[j]).norm2());

79 if((p[(i+1)%n]-p[i])%(p[(j+1)%n]-p[j])<=EPS)break;

80 }

81 }

82 return r;

83 }

84 };

85 // Dynamic convex hull trick

86 vector<pol> w;

87 void add(pt q){ // add(q), O(log^2(n))

88 vector<pt> p={q};

89 while(!w.empty()&&sz(w.back().p)<2*sz(p)){

90 for(pt v:w.back().p)p.pb(v);

91 w.pop_back();

92 }

93 w.pb(pol(chull(p)));

94 }

95 ll query(pt v){ // max(q*v:q in w), O(log^2(n))

96 ll r=-INF;

97 for(auto& p:w)r=max(r,p.farthest(v)*v);

98 return r;

99 }

4.5 Plane

1 struct plane {

2 pt a,n; // n: normal unit vector

3 plane(pt a, pt b, pt c):a(a),n(((b-a)^(c-a)).unit()){}

4 plane(){}

5 bool has(pt p){return abs((p-a)*n)<EPS;}

6 double angle(plane w){return acos(n*w.n);}

7 double dist(pt p){return abs((p-a)*n);}

8 pt proj(pt p){inter(ln(p,p+n),p);return p;}

9 bool inter(ln l, pt& r){

10 double x=n*(l.p+l.pq-a),y=n*(l.p-a);

11 if(abs(x-y)<EPS)return false;

12 r=(l.p*x-(l.p+l.pq)*y)/(x-y);

13 return true;

14 }

15 bool inter(plane w, ln& r){

16 pt nn=n^w.n;

17 pt v=n^nn;

18 double d=w.n*v;

19 if(abs(d)<EPS)return false;

20 pt p=a+v*(w.n*(w.a-a)/d);

21 r=ln(p,p+nn);

22 return true;

23 }

24 };

4.6 Convex hull

1 // CCW order

2 // Includes collinear points (change sign of EPS in left to exclude)

3 vector<pt> chull(vector<pt> p){

4 vector<pt> r;

5 sort(p.begin(),p.end()); // first x, then y

6 forn(i,p.size()){ // lower hull

7 while(r.size()>=2&&r.back().left(r[r.size()-2],p[i]))r.pop_back();

8 r.pb(p[i]);

9 }

10 r.pop_back();

11 int k=r.size();

12 for(int i=p.size()-1;i>=0;--i){ // upper hull

13 while(r.size()>=k+2&&r.back().left(r[r.size()-2],p[i]))r.pop_back();

14 r.pb(p[i]);

15 }

16 r.pop_back();

17 return r;

18 }

5 Strings

5.1 KMP

1 vector<int> kmppre(string& t){ // r[i]: longest border of t[0,i)

Universidad Nacional de Rosario - :$ CONTENTS - 5. STRINGS Page 20 of 25

2 vector<int> r(t.size()+1);r[0]=-1;

3 int j=-1;

4 forn(i,t.size()){

5 while(j>=0&&t[i]!=t[j])j=r[j];

6 r[i+1]=++j;

7 }

8 return r;

9 }

10 void kmp(string& s, string& t){ // find t in s

11 int j=0;vector<int> b=kmppre(t);

12 forn(i,s.size()){

13 while(j>=0&&s[i]!=t[j])j=b[j];

14 if(++j==sz(t))printf("Match at %d\n",i-j+1),j=b[j];

15 }

16 }

5.2 Z function

1 vector<int> z_function(string& s){

2 int a=0,b=0,n=sz(s);

3 vector<int> z(n,0); // z[i] = max k: s[0,k) == s[i,i+k)

4 forr(i,1,n){

5 if(i<=b)z[i]=min(b-i+1,z[i-a]);

6 while(i+z[i]<n&&s[z[i]]==s[i+z[i]])z[i]++;

7 if(i+z[i]-1>b)a=i,b=i+z[i]-1;

8 }

9 return z;

10 }

5.3 Manacher

1 int d1[MAXN];//d1[i] = max odd palindrome centered on i

2 int d2[MAXN];//d2[i] = max even palindrome centered on i

3 //s aabbaacaabbaa

4 //d1 1111117111111

5 //d2 0103010010301

6 void manacher(string& s){

7 int l=0,r=-1,n=s.size();

8 forn(i,n){

9 int k=i>r?1:min(d1[l+r-i],r-i);

10 while(i+k<n&&i-k>=0&&s[i+k]==s[i-k])k++;

11 d1[i]=k--;

12 if(i+k>r)l=i-k,r=i+k;

13 }

14 l=0;r=-1;

15 forn(i,n){

16 int k=i>r?0:min(d2[l+r-i+1],r-i+1);k++;

17 while(i+k<=n&&i-k>=0&&s[i+k-1]==s[i-k])k++;

18 d2[i]=--k;

19 if(i+k-1>r)l=i-k,r=i+k-1;

20 }

21 }

5.4 Aho-Corasick

1 struct vertex {

2 map<char,int> next,go;

3 int p,link;

4 char pch;

5 vector<int> leaf;

6 vertex(int p=-1, char pch=-1):p(p),pch(pch),link(-1){}

7 };

8 vector<vertex> t;

9 void aho_init(){ //do not forget!!

10 t.clear();t.pb(vertex());

11 }

12 void add_string(string s, int id){

13 int v=0;

14 for(char c:s){

15 if(!t[v].next.count(c)){

16 t[v].next[c]=t.size();

17 t.pb(vertex(v,c));

18 }

19 v=t[v].next[c];

20 }

21 t[v].leaf.pb(id);

22 }

23 int go(int v, char c);

24 int get_link(int v){

25 if(t[v].link<0)

26 if(!v||!t[v].p)t[v].link=0;

27 else t[v].link=go(get_link(t[v].p),t[v].pch);

28 return t[v].link;

29 }

30 int go(int v, char c){

31 if(!t[v].go.count(c))

32 if(t[v].next.count(c))t[v].go[c]=t[v].next[c];

33 else t[v].go[c]=v==0?0:go(get_link(v),c);

Universidad Nacional de Rosario - :$ CONTENTS - 5. STRINGS Page 21 of 25

34 return t[v].go[c];

35 }

5.5 Suffix automaton

1 struct state {int len,link;map<char,int> next;}; //clear next!!

2 state st[100005]; // should be >= 2*sz(s)

3 int sz,last;

4 void sa_init(){

5 last=st[0].len=0;sz=1;

6 st[0].link=-1;

7 }

8 void sa_extend(char c){

9 int k=sz++,p;

10 st[k].len=st[last].len+1;

11 for(p=last;p!=-1&&!st[p].next.count(c);p=st[p].link)st[p].next[c]=k;

12 if(p==-1)st[k].link=0;

13 else {

14 int q=st[p].next[c];

15 if(st[p].len+1==st[q].len)st[k].link=q;

16 else {

17 int w=sz++;

18 st[w].len=st[p].len+1;

19 st[w].next=st[q].next;st[w].link=st[q].link;

20 for(;p!=-1&&st[p].next[c]==q;p=st[p].link)st[p].next[c]=w;

21 st[q].link=st[k].link=w;

22 }

23 }

24 last=k;

25 }

5.6 Suffix array

1 #define RB(x) (x<n?r[x]:0)

2 void csort(vector<int>& sa, vector<int>& r, int k){

3 int n=sa.size();

4 vector<int> f(max(255,n),0),t(n);

5 forn(i,n)f[RB(i+k)]++;

6 int sum=0;

7 forn(i,max(255,n))f[i]=(sum+=f[i])-f[i];

8 forn(i,n)t[f[RB(sa[i]+k)]++]=sa[i];

9 sa=t;

10 }

11 vector<int> constructSA(string& s){ // O(n logn)

12 int n=s.size(),rank;

13 vector<int> sa(n),r(n),t(n);

14 forn(i,n)sa[i]=i,r[i]=s[i];

15 for(int k=1;k<n;k*=2){

16 csort(sa,r,k);csort(sa,r,0);

17 t[sa[0]]=rank=0;

18 forr(i,1,n){

19 if(r[sa[i]]!=r[sa[i-1]]||RB(sa[i]+k)!=RB(sa[i-1]+k))rank++;

20 t[sa[i]]=rank;

21 }

22 r=t;

23 if(r[sa[n-1]]==n-1)break;

24 }

25 return sa;

26 }

5.7 LCP (Longest Common Prefix)

1 vector<int> computeLCP(string& s, vector<int>& sa){

2 int n=s.size(),L=0;

3 vector<int> lcp(n),plcp(n),phi(n);

4 phi[sa[0]]=-1;

5 forr(i,1,n)phi[sa[i]]=sa[i-1];

6 forn(i,n){

7 if(phi[i]<0){plcp[i]=0;continue;}

8 while(s[i+L]==s[phi[i]+L])L++;

9 plcp[i]=L;

10 L=max(L-1,0);

11 }

12 forn(i,n)lcp[i]=plcp[sa[i]];

13 return lcp; // lcp[i]=LCP(sa[i-1],sa[i])

14 }

5.8 Suffix Tree (Ukkonen’s algorithm)

1 struct SuffixTree {

2 char s[MAXN];

3 map<int,int> to[MAXN];

4 int len[MAXN]={INF},fpos[MAXN],link[MAXN];

5 int node,pos,sz=1,n=0;

6 int make_node(int p, int l){

7 fpos[sz]=p;len[sz]=l;return sz++;}

8 void go_edge(){

9 while(pos>len[to[node][s[n-pos]]]){

Universidad Nacional de Rosario - :$ CONTENTS - 6. FLOW Page 22 of 25

10 node=to[node][s[n-pos]];

11 pos-=len[node];

12 }

13 }

14 void add(int c){

15 s[n++]=c;pos++;

16 int last=0;

17 while(pos>0){

18 go_edge();

19 int edge=s[n-pos];

20 int& v=to[node][edge];

21 int t=s[fpos[v]+pos-1];

22 if(v==0){

23 v=make_node(n-pos,INF);

24 link[last]=node;last=0;

25 }

26 else if(t==c){link[last]=node;return;}

27 else {

28 int u=make_node(fpos[v],pos-1);

29 to[u][c]=make_node(n-1,INF);

30 to[u][t]=v;

31 fpos[v]+=pos-1;len[v]-=pos-1;

32 v=u;link[last]=u;last=u;

33 }

34 if(node==0)pos--;

35 else node=link[node];

36 }

37 }

38 };

5.9 Hashing

1 struct Hash {

2 int P=1777771,MOD[2],PI[2];

3 vector<int> h[2],pi[2];

4 Hash(const string& s){

5 MOD[0]=999727999;MOD[1]=1070777777;

6 PI[0]=325255434;PI[1]=10018302;

7 forn(k,2)h[k].resize(sz(s)+1),pi[k].resize(sz(s)+1);

8 forn(k,2){

9 h[k][0]=0;pi[k][0]=1;

10 ll p=1;

11 forr(i,1,sz(s)+1){

12 h[k][i]=(h[k][i-1]+p*s[i-1])%MOD[k];

13 pi[k][i]=(1LL*pi[k][i-1]*PI[k])%MOD[k];

14 p=(p*P)%MOD[k];

15 }

16 }

17 }

18 ll get(int s, int e){

19 ll r[2]; forn(k, 2){

20 r[k]=(h[k][e]-h[k][s]+MOD[k])%MOD[k];

21 r[k]=(1LL*r[k]*pi[k][s])%MOD[k];

22 }

23 return (r[0]<<32)|r[1];

24 }

25 };

6 Flow

6.1 Matching (slower)

1 vector<int> g[MAXN]; // [0,n)->[0,m)

2 int n,m;

3 int mat[MAXM];bool vis[MAXN];

4 int match(int x){

5 if(vis[x])return 0;

6 vis[x]=true;

7 for(int y:g[x])if(mat[y]<0||match(mat[y])){mat[y]=x;return 1;}

8 return 0;

9 }

10 vector<pair<int,int> > max_matching(){

11 vector<pair<int,int> > r;

12 memset(mat,-1,sizeof(mat));

13 forn(i,n)memset(vis,false,sizeof(vis)),match(i);

14 forn(i,m)if(mat[i]>=0)r.pb(mp(mat[i],i));

15 return r;

16 }

6.2 Matching (Hopcroft-Karp)

1 vector<int> g[MAXN]; // [0,n)->[0,m)

2 int n,m;

3 int mt[MAXN],mt2[MAXN],ds[MAXN];

4 bool bfs(){

5 queue<int> q;

6 memset(ds,-1,sizeof(ds));

7 forn(i,n)if(mt2[i]<0)ds[i]=0,q.push(i);

8 bool r=false;

Universidad Nacional de Rosario - :$ CONTENTS - 6. FLOW Page 23 of 25

9 while(!q.empty()){

10 int x=q.front();q.pop();

11 for(int y:g[x]){

12 if(mt[y]>=0&&ds[mt[y]]<0)ds[mt[y]]=ds[x]+1,q.push(mt[y]);

13 else if(mt[y]<0)r=true;

14 }

15 }

16 return r;

17 }

18 bool dfs(int x){

19 for(int y:g[x])if(mt[y]<0||ds[mt[y]]==ds[x]+1&&dfs(mt[y])){

20 mt[y]=x;mt2[x]=y;

21 return true;

22 }

23 ds[x]=1<<30;

24 return false;

25 }

26 int mm(){

27 int r=0;

28 memset(mt,-1,sizeof(mt));memset(mt2,-1,sizeof(mt2));

29 while(bfs()){

30 forn(i,n)if(mt2[i]<0)r+=dfs(i);

31 }

32 return r;

33 }

6.3 Hungarian

1 typedef double th;

2 const th INF=1e18; // to maximize: set INF to 1, use negative values

3 struct Hungarian {

4 int n,m; // important: n must be <=m

5 vector<vector<th> > a;

6 vector<th> u,v;vector<int> p,way; // p: assignment

7 Hungarian(int n, int m):

8 n(n),m(m),a(n+1,vector<th>(m+1,INF-1)),u(n+1),v(m+1),p(m+1),way(m+1){}

9 void set(int x, int y, th v){a[x+1][y+1]=v;}

10 th assign(){

11 forr(i,1,n+1){

12 int j0=0;p[0]=i;

13 vector<th> minv(m+1,INF);

14 vector<char> used(m+1,false);

15 do {

16 used[j0]=true;

17 int i0=p[j0],j1;th delta=INF;

18 forr(j,1,m+1)if(!used[j]){

19 th cur=a[i0][j]-u[i0]-v[j];

20 if(cur<minv[j])minv[j]=cur,way[j]=j0;

21 if(minv[j]<delta)delta=minv[j],j1=j;

22 }

23 forn(j,m+1)

24 if(used[j])u[p[j]]+=delta,v[j]-=delta;

25 else minv[j]-=delta;

26 j0=j1;

27 } while(p[j0]);

28 do {

29 int j1=way[j0];p[j0]=p[j1];j0=j1;

30 } while(j0);

31 }

32 return -v[0]; // cost

33 }

34 };

6.4 Dinic

1 // Min cut: nodes with dist>=0 vs nodes with dist<0

2 // MVC (bipartite): left nodes with dist<0 + right nodes with dist>0

3 int nodes,src,dst; // remember to init nodes

4 int dist[MAXN],q[MAXN],work[MAXN];

5 // ll M[MAXN]; (MIN CAP)

6 struct edge {int to,rev;ll f,cap;};

7 vector<edge> g[MAXN];

8 void add_edge(int s, int t, ll cap/*, ll lcap = 0 (MIN CAP)*/){

9 // if(lcap) M[s] -= lcap, M[t] += lcap, cap -= lcap; (MIN CAP)

10 g[s].pb((edge){t,sz(g[t]),0,cap});

11 g[t].pb((edge){s,sz(g[s])-1,0,0});

12 }

13 bool dinic_bfs(){

14 fill(dist,dist+nodes,-1);dist[src]=0;

15 int qt=0;q[qt++]=src;

16 forn(qh,qt){

17 int u=q[qh];

18 forn(i,sz(g[u])){

19 edge &e=g[u][i];int v=g[u][i].to;

20 if(dist[v]<0&&e.f<e.cap)dist[v]=dist[u]+1,q[qt++]=v;

21 }

22 }

23 return dist[dst]>=0;

Universidad Nacional de Rosario - :$ CONTENTS - 7. OTHER Page 24 of 25

24 }

25 ll dinic_dfs(int u, ll f){

26 if(u==dst)return f;

27 for(int &i=work[u];i<sz(g[u]);i++){

28 edge &e=g[u][i];

29 if(e.cap<=e.f)continue;

30 int v=e.to;

31 if(dist[v]==dist[u]+1){

32 ll df=dinic_dfs(v,min(f,e.cap-e.f));

33 if(df>0){e.f+=df;g[v][e.rev].f-=df;return df;}

34 }

35 }

36 return 0;

37 }

38 ll max_flow(int _src, int _dst){ // O(m n^2)

39 src=_src;dst=_dst; // if unit weights, O(m min(sqrt(m), n^{2/3}))

40 ll result=0; // if bipartite matching, O(m sqrt(n))

41 while(dinic_bfs()){

42 fill(work, work+nodes, 0);

43 while(ll delta=dinic_dfs(src,INF))result+=delta;

44 }

45 return result;

46 }

47 //Checks if a strongly connected flow network has a feasible flow

distribution

48 bool feasible(int n){ // n = number of nodes in the network

49 src = n, dst = n+1, nodes = n+2;

50 forn(i, n){

51 if(M[i] > 0)add_edge(src, i, M[i]);

52 if(M[i] < 0)add_edge(i, dst, -M[i]);

53 }

54 max_flow(src, dst);

55 for(edge e : g[src]) if(e.f < e.cap) return false;

56 return true;

57 }

6.5 Min cost max flow

1 typedef ll tf;const tf INFFLUJO=1e14;

2 typedef ll tc;const tc INFCOSTO=1e14;

3 struct edge {

4 int u,v;tf cap,flow;tc cost;

5 tf rem(){return cap-flow;}

6 };

7 int nodes; // remember to init nodes

8 vector<int> g[MAXN];

9 vector<edge> e;

10 void add_edge(int u, int v, tf cap, tc cost) {

11 g[u].pb(e.size());e.pb((edge){u,v,cap,0,cost});

12 g[v].pb(e.size());e.pb((edge){v,u,0,0,-cost});

13 }

14 tc dist[MAXN],mncost;

15 int pre[MAXN];

16 tf cap[MAXN],mxflow;

17 bool in_queue[MAXN];

18 void flow(int s, int t){

19 memset(in_queue,0,sizeof(in_queue));

20 mxflow=mncost=0;

21 while(1){

22 fill(dist,dist+nodes,INFCOSTO);dist[s]=0;

23 memset(pre,-1,sizeof(pre));pre[s]=0;

24 memset(cap,0,sizeof(cap));cap[s]=INFFLUJO;

25 queue<int> q;q.push(s);in_queue[s]=1;

26 while(q.size()){

27 int u=q.front();q.pop();in_queue[u]=0;

28 forn(_,g[u].size()){

29 int i=g[u][_];

30 edge &E=e[i];

31 if(E.rem()&&dist[E.v]>dist[u]+E.cost+1e-9){

32 dist[E.v]=dist[u]+E.cost;

33 pre[E.v]=i;

34 cap[E.v]=min(cap[u],E.rem());

35 if(!in_queue[E.v])q.push(E.v),in_queue[E.v]=1;

36 }

37 }

38 }

39 if(pre[t]<0)break;

40 mxflow+=cap[t];mncost+=cap[t]*dist[t];

41 for(int v=t;v!=s;v=e[pre[v]].u){

42 e[pre[v]].flow+=cap[t];e[pre[v]^1].flow-=cap[t];

43 }

44 }

45 }

7 Other

7.1 Mo’s algorithm

Universidad Nacional de Rosario - :$ CONTENTS - 7. OTHER Page 25 of 25

1 int n,sq,nq; // array size, sqrt(array size), #queries

2 struct qu{int l,r,id;}; // O((n+nq)*sqrt(n)*update)

3 qu qs[MAXN];

4 ll ans[MAXN]; // ans[i] = answer to ith query

5 bool qcomp(const qu &a, const qu &b){

6 if(a.l/sq!=b.l/sq) return a.l<b.l;

7 return (a.l/sq)&1?a.r<b.r:a.r>b.r;

8 }

9 void mos(){

10 forn(i,nq)qs[i].id=i;

11 sq=sqrt(n)+.5;

12 sort(qs,qs+nq,qcomp);

13 int l=0,r=0;

14 init();

15 forn(i,nq){

16 qu q=qs[i];

17 while(l>q.l)add(--l);

18 while(r<q.r)add(r++);

19 while(l<q.l)remove(l++);

20 while(r>q.r)remove(--r);

21 ans[q.id]=get_ans();

22 }

23 }

7.2 Divide and conquer DP optimization

1 // O(knlogn). For 2D dps, when the position of optimal choice is non-

decreasing as the second variable increases

2 int k,n,f[MAXN],f2[MAXN];

3 void doit(int s, int e, int s0, int e0, int i){

4 // [s,e): range of calculation, [s0,e0): range of optimal choice

5 if(s==e)return;

6 int m=(s+e)/2,r=INF,rp;

7 forr(j,s0,min(e0,m)){

8 int r0=f[j]+something(j,m-1); // calculate cost of taking [j,m-1]

9 if(r0<r)r=r0,rp=j; // position of optimal choice

10 }

11 f2[m]=r;

12 doit(s,m,s0,rp+1,i);doit(m+1,e,rp,e0,i);

13 }

14 int doall(){

15 init_base_cases();

16 forr(i,1,k+1)doit(1,n+1,0,n,i),memcpy(f,f2,sizeof(f));

17 return f[n];

18 }

7.3 Dates

1 int dateToInt(int y, int m, int d){ // 1-indexado (mes 2 = febrero)

2 return 1461*(y+4800+(m-14)/12)/4+367*(m-2-(m-14)/12*12)/12-

3 3*((y+4900+(m-14)/12)/100)/4+d-32075;

4 }

5 void intToDate(int jd, int& y, int& m, int& d){

6 int x,n,i,j;x=jd+68569;

7 n=4*x/146097;x-=(146097*n+3)/4;

8 i=(4000*(x+1))/1461001;x-=1461*i/4-31;

9 j=80*x/2447;d=x-2447*j/80;

10 x=j/11;m=j+2-12*x;y=100*(n-49)+i+x;

11 }

7.4 C++ stuff

1 const double DINF=numeric_limits<double>::infinity(); // double inf

2 // Custom comparator for set/map

3 struct comp {

4 bool operator()(const double& a, const double& b) const {

5 return a+EPS<b;}

6 };

7 set<double,comp> w; // or map<double,int,comp>

8 // Iterate over non empty subsets of bitmask

9 for(int s=m;s;s=(s-1)&m) // Decreasing order

10 for (int s=0;s=s-m&m;) // Increasing order

11 // Returns the number of trailing 0-bits in x. x=0 is undefined.

12 int __builtin_ctz (unsigned int x)

13 // Returns the number of leading 0-bits in x. x=0 is undefined.

14 int __builtin_clz (unsigned int x)

15 // Use corresponding versions for long long appending ll at the end.

16 v=(x&(-x)) // Get the value of the least significant bit that is one.

7.5 Max number of divisors up to 10n

1 (0,1) (1,4) (2,12) (3,32) (4,64) (5,128) (6,240) (7,448) (8,768) (9,1344)

(10,2304) (11,4032) (12,6720) (13,10752) (14,17280) (15,26880)

(16,41472) (17,64512) (18,103680)

	Data structures
	Segment tree
	Segment tree - Lazy propagation
	Segment tree - Persistence
	Segment tree - 2D
	Sparse table (static RMQ)
	Wavelet tree
	STL extended set
	Treap (as BST)
	Treap (implicit key)
	Convex hull trick (static)
	Convex hull trick (dynamic)
	Max Queue
	Union Find

	Graphs
	Bellman-Ford
	Floyd-Warshall
	Strongly connected components (+ 2-SAT)
	Articulation - Bridges - Biconnected
	Chu-Liu (minimum spanning arborescence)
	LCA - Binary Lifting
	Heavy-Light decomposition
	Centroid decomposition
	Eulerian path
	Dynamic connectivity
	Edmond's blossom (matching in general graphs)

	Math
	Identities
	Theorems
	Integer floor division
	Extended Euclid
	Pollard's rho
	Simpson's rule
	Polynomials
	Bairstow
	Fast Fourier Transform
	Fast Hadamard Transform
	Karatsuba
	Modular inverse
	Chinese remainder theorem (Euge)
	Mobius
	Linear Recurrence
	Gaussian Elimination
	Simplex

	Geometry
	Point
	Line
	Circle
	Polygon
	Plane
	Convex hull

	Strings
	KMP
	Z function
	Manacher
	Aho-Corasick
	Suffix automaton
	Suffix array
	LCP (Longest Common Prefix)
	Suffix Tree (Ukkonen's algorithm)
	Hashing

	Flow
	Matching (slower)
	Matching (Hopcroft-Karp)
	Hungarian
	Dinic
	Min cost max flow

	Other
	Mo's algorithm
	Divide and conquer DP optimization
	Dates
	C++ stuff
	Max number of divisors up to 10n

