Universidad Nacional de Rosario - :$

CONTENTS - CONTENTS

Page 1 of 25

Contents
1 Data structures 2
1.1 Segment tree 2
1.2 Segment tree - Lazy propagation 2
1.3 Segment tree - Persistence 2
1.4 Segment tree - 2D oL 3
1.5 Sparse table (static RMQ) L L 3
1.6 Wavelet tree Lo 3
1.7 STLextended set 4
1.8 Treap (as BST) o o o o 4
1.9 Treap (implicit key) L 4
1.10 Convex hull trick (static) 5
1.11 Convex hull trick (dynamic) L L 6
1.12 Max Queue o 6
1.13 Union Find 6
2 Graphs 6
2.1 Bellman-Ford 6
2.2 Floyd-Warshall 6
2.3 Strongly connected components (+ 2-SAT) 7
2.4 Articulation - Bridges - Biconnected 7
2.5 Chu-Liu (minimum spanning arborescence) 8
2.6 LCA-Binary Lifting 8
2.7 Heavy-Light decomposition 8
2.8 Centroid decomposition 9
2.9 Eulerian path L e 9
2.10 Dynamic connectivity Lo 9
2.11 Edmond’s blossom (matching in general graphs) 10
3 Math 11
3.1 Identities e 11
3.2 Theorems e 11
3.3 Integer floor division 11
3.4 Extended Euclid 11
3.5 Pollard’stho 11
3.6 Simpson’srule 12
3.7 Polynomials 12
3.8 Bairstow L 13
3.9 Fast Fourier Transform 14

3.10 Fast Hadamard Transform
3.11 Karatsuba
3.12 Modular inverse
3.13 Chinese remainder theorem (Euge)

3.14 Mobius

3.15 Linear Recurrence
3.16 Gaussian Elimination

3.17 Simplex

Geometry

41 Point.
42 Line

4.3 Circle
4.4 Polygon
4.5 Plane

4.6 Convex hull

Strings

51 KMP.
5.2 7 function
5.3 Manacher
5.4 Aho-Corasick
5.5 Suffix automaton
5.6 Suffix array
5.7 LCP (Longest Common Prefix)
5.8 Suffix Tree (Ukkonen’s algorithm)

5.9 Hashing

Flow

6.1 Matching (slower)
6.2 Matching (Hopcroft-Karp)
6.3 Hungarian
6.4 Dinic.
6.5 Min cost max flow

Other

7.1 Mo’s algorithm
7.2 Divide and conquer DP optimization

7.3 Dates

74 CH+ stuff
7.5 Max number of divisors up to 10™

Universidad Nacional de Rosario - :$

CONTENTS - 1. DATA STRUCTURES

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

1 Data structures

1.1 Segment tree

#define oper min
#define NEUT INF
struct STree { // segment tree for min over integers
vector<int> st;int n;
STree(int n): st(4*n+5,NEUT), n(n) {}
void init(int k, int s, int e, int *a){
if (s+1==e){st[k]=als] ;return;}
int m=(s+e)/2;
init(2*k,s,m,a) ;init(2%k+1,m,e,a);
st [k]=oper (st [2*k] ,st [2%k+1]);
}
void upd(int k, int s, int e, int p, int v){
if (s+1==e){st[k]=v;return;}
int m=(s+e)/2;
if (p<m)upd (2*k,s,m,p,v);
else upd(2*k+1,m,e,p,v);
st [k]=oper (st [2*k] ,st[2%k+1]);
}
int query(int k, int s, int e, int a, int b){
if (s>=b| |e<=a)return NEUT;
if (s>=a&&e<=b)return stlk];
int m=(s+e)/2;
return oper(query(2+k,s,m,a,b),query(2*k+1,m,e,a,b));
}
void init(int *a){init(1,0,n,a);}
void upd(int p, int v){upd(1,0,n,p,v);}
int query(int a, int b){return query(1,0,n,a,b);}
}; // usage: STree rmq(n);rmq.init(x);rmq.upd(i,v);rmq.query(s,e);

1.2 Segment tree - Lazy propagation

struct STree { // example: range sum with range addition

vector<int> st,lazy;int n;
STree(int n): st(4*n+5,0), lazy(4*n+5,0), n(n) {}
void init(int k, int s, int e, int *a){

lazy[k]=0; // lazy neutral element

if (s+1==e){st[k]l=a[s] ;return;}

int m=(s+e)/2;

init(2*k,s,m,a) ;init(2*k+1,m,e,a);

st [k]=st [2*k] +st [2%k+1]; // operation

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

void push(int k, int s, int e){
if('lazy[k])return; // if neutral, nothing to do
st [k]+=(e-s)*lazy[k]; // update st according to lazy
if(s+1<e){ // propagate to children
lazy [2*k] +=lazy [k] ;
lazy[2+k+1]+=lazy[k];

}
lazy[k]=0; // clear node lazy

}

void upd(int k, int s, int e, int a, int b, int v){
push(k,s,e);

if (s>=b| |e<=a)return;
if (s>=ag&e<=b){
lazy[k]+=v; // accumulate lazy
push(k,s,e) ;return;
}
int m=(s+e)/2;
upd(2*k,s,m,a,b,v) ;upd(2+k+1,m,e,a,b,v);
st [k]=st[2*k] +st [2*¥k+1]; // operation
}
int query(int k, int s, int e, int a, int b){
if(s>=b| |e<=a)return 0; // operation neutral
push(k,s,e);
if (s>=a&&e<=b)return stlk];
int m=(s+e)/2;
return query(2+k,s,m,a,b)+query(2xk+1,m,e,a,b); // operation
}
void init(int *a){init(1,0,n,a);}
void upd(int a, int b, int v){upd(1,0,n,a,b,v);}
int query(int a, int b){return query(1,0,n,a,b);}
}; // usage: STree rmq(n) ;rmq.init(x);rmq.upd(s,e,v);rmq.query(s,e);

1.3 Segment tree - Persistence

#define oper min
#define NEUT INF
struct STree { // persistent segment tree for min over integers
vector<int> st,l,r;int n,rt,sz;
STree(int n): st(24+*n,NEUT),1(24%n,0),r(24*n,0) ,n(n),rt(0),sz(1){}
// be careful with memory! 4#*n+g*log(n) . 24*n should be enough
int init(int s, int e, int *a){ // not necessary in most cases
int k=sz++;
if (st1==e){st[k]l=als] ;return k;}
int m=(s+e)/2;

Page 2 of 25

Universidad Nacional de Rosario - :$ CONTENTS - 1. DATA STRUCTURES Page 3 of 25

11 1[k]=init(s,m,a);r[k]l=init(m,e,a); 17 int r=NEUT;

12 st [k]=oper(st[1[k]],stlr[k]]); 18 for(int i0=xO+n,il=x1+n;i0<il;i0>>=1,i1>>=1){

13 return k; 19 int t[4],g=0;

14 } 20 if (10&1)t [q++]=10++;

15 int upd(int k, int s, int e, int p, int v){ 21 if (11&D)t[g++]=—-1i1;

16 int nk=sz++;1[nk]=1[k];r[nk]=r[k]; 22 forn(k,q)for(int jO=yO+m,jl=yl+m;jO<jl;jO>>=1,j1>>=1){
17 if (s+1==e){st[nk]=v;return nk;} 23 if (jO&1)r=op(r,st[t[k]] [jO++]);

18 int m=(s+e)/2; 24 if (j1&1)r=op(r,st[t[k]] [--j1]1);

19 if (p<m)1 [nk]=upd(1[k],s,m,p,v); 25 }

20 else r[nk]=upd(r[k],m,e,p,v); 26 T

21 st [nk]=oper(st[1[nk]],st[r[nk]l]); 27 return r;

22 return nk; 28 | }

23 } .

24 int query(int k, int s, int e, int a, int b){ 1.5 Sparse table (static RMQ)
25 if (s>=b| |e<=a)return NEUT;

1 |#define oper min

26 if (s>=a&&e<=b)return st[k]; . . -

27 int m=(s+e)/2; 2 |int st[K] [1<<K];int n; // K such that 27K>n

28 return oper(query(1[k],s,m,a,b),query(r[k],m,e,a,b)); » |void Stflnlt(lnt fa){ i

-) 4 forn(i,n)st[0] [i]=ali];

30 int init(int *a){return init(0,n,a);} ° forr(k,1fK)forn(1,n—(1<<l‘{)+1) .

31 int upd(int k, int p, int v){return rt=upd(k,0,n,p,v);} ° stlk] [i]=oper (st [k-1] [i], st lk-1] [i+ (<<= D)5
7 |}

32 int upd(int p, int v){return upd(rt,p,v);} // update on last root
33 int query(int k, int a, int b){return query(k,0,n,a,b);}
3a |}; // usage: STree rmq(n) ;root=rmq.init(x);new_root=rmq.upd(root,i,v);rmq.

s |int st_query(int s, int e){
9 int k=31-__builtin_clz(e-s);

query (root,s,e) ; 10 return oper(st[k] [s],st[k] [e-(1<<k)]);

11 }
1.4 Segment tree - 2D
1.6 Wavelet tree
1 |int n,m;
> |int a[MAXN] [MAXN],st[2*MAXN] [2«MAXN] ; 1 |struct WT {
3 [void build(){ 2 vector<int> wt[1<<20];int n;
4 forn(i,n)forn(j,m)st[i+n] [j+ml=alil [j]; 3 void init(int k, int s, int e){
5 forn(i,n)for(int j=m-1;j;--3) 4 if (s+1==e)return;
6 st [i+n] [j1=op(st[i+n] [j<<1],st[i+n] [j<<1]1]); 5 wt [k] .clear O ;wt [k] .pb(0) ;
7 for(int i=n-1;i;--i)forn(j,2*m) 6 int m=(s+e)/2;
8 st[i] [j1=op(st[i<<1] [j],st[i<<111]1[j]); 7 init(2%k,s,m) ;init (2%k+1,m,e);
o |} 8 }
10 |void upd(int x, int y, int v){ 9 void add(int k, int s, int e, int v){
11 st [x+n] [y+m]=v; 10 if (s+1==e)return;
12 for(int j=y+m;j>1;j>>=1)st[x+n] [j>>1]=op(st[x+n] [j],st[x+n] [711); 11 int m=(s+e)/2;
13 for(int i=x+n;i>1;i>>=1)for(int j=y+m;j;j>>=1) 12 if (v<m)wt [k] .pb(wt [k] .back()) ,add(2*k,s,m,Vv) ;
14 st[i>>1] [j1=op(st[i] [j],st[1"1]1[j]1); 13 else wt[k].pb(wt[k] .back()+1),add(2*k+1,m,e,v);
15 |} 14 }
16 |int query(int x0, int x1, int yO, int y1){ 15 int queryO(int k, int s, int e, int a, int b, int i){

Universidad Nacional de Rosario - :$

CONTENTS - 1. DATA STRUCTURES

Page 4 of 25

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

if (s+l1==e)return s;
int m=(s+e)/2;
int g=(b-a)-(wt [k] [b]-wt [k] [a]);
if (i<g)return query0(2xk,s,m,a-wt[k] [a] ,b-wt[k] [b],1);
else return query0(2+k+1,m,e,wt[k] [a],wt([k] [b],i-q);
}
void upd(int k, int s, int e, int i){
if (s+1==e)return;
int m=(s+e)/2;
int vO=wt[k] [i+1]-wt[k] [1i],vi=wt[k] [i+2]-wt[k] [i+1];
if (1v0&&!v1)upd (2%k,s,m,i-wt [k] [i]);
else if (vO&&v1)upd(2*k+1,m,e,wt[k] [1]);
else if (vO)wt[k] [i+1]-—;
else wtl[k] [i+1]++;
}
void init(int _n){n=_n;init(1,0,n);} // (values in range [0,n))
void add(int v){add(1,0,n,v);}
int queryO(int a, int b, int i){ // ith element in range [a,b)
return query0(1,0,n,a,b,i); // (if it was sorted)
}
void upd(int i){ // swap positions i,i+1
upd(1,0,n,i);
}
};

1.7 STL extended set

#include<ext/pb_ds/assoc_container.hpp>

#include<ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;

typedef tree<int,null_type,less<int>,rb_tree_tag,
tree_order_statistics_node_update> ordered_set;

// find_by_order(i) -> iterator to ith element

// order_of_key(k) -> position (int) of lower_bound of k

1.8 Treap (as BST)

typedef struct item *pitem;
struct item {
int key,pr,cnt;
pitem 1,r;
item(int key) :key(key) ,pr(rand()),cnt(1),1(0),r(0) {3}
};
int cnt(pitem t){return t?t->cnt:0;}

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

void upd_cnt(pitem t){if (t)t->cnt=cnt(t->1)+cnt(t->r)+1;2}
void split(pitem t, int key, pitem& 1, pitem& r){ // 1: < key, r: >= key
if (1) 1=r=0;
else if (key<t->key)split(t->1,key,l,t->1),r=t;
else split(t->r,key,t->r,r),1=t;
upd_cnt(t);
}
void insert(pitem& t, pitem it){
if(1t)t=it;
else if (it->pr>t->pr)split(t,it->key,it->1,it->r),t=it;
else insert(it->key<t->key?t->1l:t->r,it);
upd_cnt(t);
}
void merge(pitem& t, pitem 1, pitem r){
if (11 ') t=171:1;
else if (1->pr>r->pr)merge(l->r,1->r,r),t=1;
else merge(r->1,1,r->1),t=r;
upd_cnt(t);
}
void erase(pitem& t, int key){
if (t->key==key)merge(t,t->1,t->r);
else erase(key<t->key?t->1:t->r,key);
upd_cnt(t);
}
pitem kth(pitem t, int k){
if(1t)return O;
if (k==cnt (t->1))return t;
return k<cnt(t->1)?kth(t->1,k) :kth(t->r,k-cnt(t->1)-1);
}
pair<int,int> lb(pitem t, int key){ // position and value of lower_bound
if (1t)return mp(0,1<<30); // (special value)
if (key>t->key){
auto w=1b(t->r,key) ;w.fst+=cnt(t->1)+1;return w;
}
auto w=1b(t->1,key);
if (w.fst==cnt(t->1))w.snd=t->key;
return w;

1.9 Treap (implicit key)

// example that supports range reverse and addition updates, and range sum

query
// (commented parts are specific to this problem)

Universidad Nacional de Rosario - :$

CONTENTS - 1. DATA STRUCTURES

Page 5 of 25

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

43

44

typedef struct item *pitem;
struct item {
int cnt,pr,val;
// int sum; // (paramters for range query)
// bool rev;int add; // (parameters for lazy prop)

pitem 1,r;
item(int val): pr(rand()),cnt(1),val(val),1(0),r(0)/*,sun(val) ,rev(0),add
(0)*/ {}
};
void push(pitem it){
if(it){

/*xif (it->rev){
swap(it->1,it->r);
if(it->1)it->1->rev =true;
if (it->r)it->r->rev =true;
it->rev=false;
}
it->val+=it—>add;it->sum+=it->cnt*it->add;
if (it->1)it->1->add+=it->add;
if (it->r)it->r->add+=it->add;
it->add=0;*/
}
}
int cnt(pitem t){return t7t->cnt:0;}
// int sum(pitem t){return t?push(t),t->sum:0;}
void upd_cnt(pitem t){
if (£){
t->cnt=cnt (t—>1)+cnt (t->r)+1;
// t—>sum=t->val+sum(t->1)+sum(t->1);
}
}
void merge(pitem& t, pitem 1, pitem r){
push(1) ;push(r);
if (11 1r)t=171:r;
else if (1->pr>r->pr)merge(1->r,1->r,r),t=1;
else merge(r->1,1,r->1),t=r;
upd_cnt(t);
}
void split(pitem t, pitem& 1, pitem& r, int sz){ // sz:desired size of 1
if (1t){1=r=0;return;’}
push(t);
if (sz<=cnt (t->1))split (t->1,1,t->1,s2) ,r=t;
else split(t->r,t->r,r,sz-1-cnt(t->1)),1=t;

45

46

47

48

49

50

51

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

upd_cnt(t);
}
void output(pitem t){ // useful for debugging

if(1t)return;

push(t);

output (t->1) ;printf (" jd",t->val) ;output (t->r);
}

// use merge and split for range updates and queries

1.10 Convex hull trick (static)

typedef 11 tc;
struct Line{tc m,h;};
struct CHT { // for minimum (for maximum just change the sign of lines)
vector<Line> c;
int pos=0;
tc in(Line a, Line b){
tc x=b.h-a.h,y=a.m-b.m;
return x/y+@%y?! ((x>0)~(y>0)):0); // ==ceil(x/y)
}
void add(tc m, tc h){ // m’s should be non increasing
Line 1=(Line){m,h};
if(c.size O &&m==c.back() .m){
1.h=min(h,c.back() .h) ;c.pop_back() ;if (pos)pos—-;
}
while(c.size()>1&&in(c.back(),1)<=in(c[c.size()-2],c.back())){
c.pop_back() ;if (pos)pos——;
}
c.pb(D);
}
inline bool fbin(tc x, int m){return in(c[m],c[m+1])>x;}
tc eval(tc x){
// 0(log n) query:
int s=0,e=c.size();
while(e-s>1){int m=(s+e)/2;
if (fbin(x,m-1))e=m;
else s=m;
}
return c[s].m¥x+c[s].h;
// 0(1) query (for ordered x’s):
while(pos>0&&fbin(x,pos-1))pos—-;
while(pos<c.size()-1&&!fbin(x,pos))pos++;
return c[pos] .m*x+c[pos] .h;

Universidad Nacional de Rosario - :$

CONTENTS - 2. GRAPHS

Page 6 of 25

34 ‘};

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

1.11 Convex hull trick (dynamic)

typedef 11 tc;
const tc is_query=-(1LL<<62); // special value for query
struct Line {
tc m,b;
mutable multiset<Line>::iterator it,end;
const Line* succ(multiset<Line>::iterator it) const {
return (++it==end? NULL : &*it);}
bool operator<(const Line& rhs) const {
if (rhs.b!=is_query)return m<rhs.m;
const Line *s=succ(it);
if(!'s)return 0;
return b-s->b<(s->m-m)*rhs.m;
3
3
struct HullDynamic : public multiset<Line> { // for maximum
bool bad(iterator y){
iterator z=next(y);
if (y==begin()){
if (z==end())return false;
return y->m==z->m&&y->b<=z->b;
}
iterator x=prev(y);
if (z==end())return y->m==x->m&&y->b<=x->b;
return (x->b-y->b)* (z->m-y->m)>=(y->b-z->b) * (y—>m-x->m) ;
3
iterator next(iterator y){return ++y;}
iterator prev(iterator y){return --y;}
void add(tc m, tc b){
iterator y=insert((Line){m,b});
y->it=y;y->end=end() ;
if (bad(y)){erase(y) ;return;}
while(next (y) !'=end () &&bad (next (y)))erase(next(y));
while(y!=begin()&&bad(prev(y)))erase(prev(y));
}
tc eval(tc x){
Line 1=+lower_bound((Line){x,is_queryl});
return 1.m*x+1.Db;
}
};

10

11

12

13

14

1.12 Max Queue

struct MaxQueue { // for min, change < with >.

deque<int> d; queue<int> q;

void push(int v){while(sz(d)&&d.back()<v)d.pop_back();d.pb(v);q.push(v);}
void pop(){if(sz(d)&&d.front()==q.front())d.pop_front() ;q.pop();}

int getMax(){return sz(d)?d.front() :NEUT;}

s

1.13 Union Find

int uf [MAXN] ;
void uf_init(){memset (uf,-1,sizeof (uf));}
int uf_find(int x){return uf [x]<07x:uf [x]=uf_find(uf[x]);}
bool uf_join(int x, int y){
x=uf_find(x);y=uf_£find(y);
if (x==y)return false;
if (uf [x]>uf [y])swap(x,y);
uf [x]+=uf [y] ;uf [y]=x;
return true;

}

2 Graphs
2.1 Bellman-Ford

int n;
vector<pair<int,int> > g[MAXN]; // u—>[(v,cost)]
11 dist[MAXN];
void bford(int src){ // 0(nm)
fill(dist,dist+n,INF) ;dist[src]=0;
forn(_,n-1)forn(x,n)if (dist[x] !=INF)for(auto t:glx]){
dist[t.fst]=min(dist[t.fst],dist[x]+t.snd);
3
forn(x,n)if (dist[x] !=INF)for(auto t:g[x]){
if(dist[t.fst]>dist [x]+t.snd){
// neg cycle: all nodes reachable from t.fst have -INF distance
// to reconstruct neg cycle: save "prev" of each node, go up from t.
fst until repeating a node. this node and all nodes between the
two occurences form a neg cycle

2.2 Floyd-Warshall

Universidad Nacional de Rosario - :$

CONTENTS - 2. GRAPHS

Page 7 of 25

10

11

12

10

11

12

13

17

18

19

20

21

22

23

24

25

26

27

28

29

// glil[j]l: weight of edge (i, j) or INF if there’s no edge

// glil [i1=0

11 g[MAXN] [MAXN];int n;

void floyd(O{ // 0(n"3) . Replaces g with min distances
forn(k,n)forn(i,n)if(g[i] [k]<INF)forn(j,n)if (glk] [j]<INF)

glil [j1=min(g[il [j1,gli] kl+glk] [31);

}

bool inNegCycle(int v){return gl[v] [v]<0;}

bool hasNegCycle(int a, int b){ // true iff there’s neg cycle in between
forn(i,n)if (glal [i]<INF&&gl[i] [b] <INF&&gl[i] [i]<0)return true;
return false;

}
2.3 Strongly connected components (4+ 2-SAT)

// MAXN: max number of nodes or 2 * max number of variables (2SAT)
bool truth[MAXN]; // truth[cmp[il]=value of variable i (2SAT)
int nvar;int neg(int x){return MAXN-1-x;} // (2SAT)
vector<int> g[MAXN];
int n,lw[MAXN],idx[MAXN],qidx,cmp[MAXN],qcmp;
stack<int> st;
void tjn(int w{
1w [u]l=idx [u] =++qidx;
st.push(w) ;cmp [u]=-2;
for(int v:glul){
if (tidx[v] | lcmp [v]==-2){
if(tidx[v]) tjn(v);
lw[u]l=min(lw[u] ,1w[v]);
}
}
if (lw[u]==idx[u]){
int x;
do{x=st.top();st.pop();cmp[x]=qcmp;Iwhile(x!=u);
truth[qemp] =(cmp [neg(uw)1<0); // (2SAT)
qcmpt+;
}
}
void sccO{
memset (idx,0,sizeof (idx)) ;qidx=0;
memset (cmp,-1,sizeof (cmp)) ;qcmp=0;
forn(i,n)if (1idx[i]1)tjn(i);
}
// Only for 2SAT:
void addor(int a, int b){glneg(a)].pb(b);glneg(b)].pb(a);}

30

31

32

33

34

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

bool satisf(int _nvar){
nvar=_nvar ;n=MAXN;scc();
forn(i,nvar)if (cmp[il==cmp[neg(i)])return false;
return true;

}
2.4 Articulation - Bridges - Biconnected

vector<int> g[MAXN];int n;
struct edge {int u,v,comp;bool bridge;};
vector<edge> e;
void add_edge(int u, int v){
glul .pb(e.size());glv] .pb(e.size());
e.pb((edge){u,v,-1,false});
}
int D[MAXN],B[MAXN],T;
int nbc; // number of biconnected components
int art[MAXN]; // articulation point iff !=0
stack<int> st; // only for biconnected
void dfs(int u,int pe){
Blul=D[u]=T++;
for(int ne:glul)if (ne'!=pe){
int v=e[ne] .u"el[ne] .v u;
if (D[v]<0){
st.push(ne) ;dfs(v,ne);
if (B[v]>D[ul)e[ne] .bridge = true; // bridge
if (B[v]>=D[ul){
art[ul++; // articulation
int last; // start biconnected
do {
last=st.top();st.pop();
e[last] . comp=nbc;
} while(last!=ne);
nbc++; // end biconnected
}
Blul=min(B[u] ,B[v]);
}
else if(D[v]<D[ul)st.push(ne),Blul=min(B[u] ,D[v]);
}
}
void doit(){
memset(D,-1,sizeof (D)) ;memset(art,0,sizeof (art));
nbc=T=0;
forn(i,n)if (D[i]<0)dfs(i,-1),art[i]—;

Universidad Nacional de Rosario - :$

CONTENTS - 2. GRAPHS

Page 8 of 25

37‘}

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

2.5 Chu-Liu (minimum spanning arborescence)

typedef 11 tw;const tw INF=1LL<<60;
struct edge {int src,dst;tw w;};
struct ChuLiu {
int n,r;tw cost;bool found;
vector<int> no,pr,mark;
vector<vector<int> > comp,nx;
vector<tw> mcost;
vector<vector<edge> > h;
ChuLiu(int n):n(n),h(@){}
void add_edge(int x, int y, tw w){h[y].pb((edge){x,y,w});}
void visit(int v, int s){
if (mark[v]){
vector<int> temp=no;found=true;
do {
cost+=mcost [v] ;v=pr[v];
if (v!=s)while(comp[v] .size()>0){
no [comp [v] .back()]=s;
comp[s] .pb(comp[v] .back());
comp [v] .pop_back() ;
}
}while(v!=s);
for(int j:comp[s])if(j!=r)for(edge& e:h[jl)
if (nole.src] !=s)e.w-=mcost [temp[j]1];
}
mark [v]=true;
for(int i:nx[v])if(no[i]!=no[v]&&pr[noli]ll==v)
if ('mark[no[i]] | |i==s)
visit(i,s);
}
tw doit(int _r){ // r: root (0(nm))
r=_r;
no.resize(n) ;comp.clear() ;comp.resize(n);
forn(x,n)comp[x] .pb(no[x]=x);
for(cost=0;;){
pr.clear() ;pr.resize(n,-1);
mcost=vector<tw>(n,INF);
forn(j,n)if (j!=r)for(edge e:h[j]l)
if (nole.src] !'=no[jl&&e.w<mcost [no[jl])
mcost [no[jl]l=e.w,pr[no[jl]=nole.src];
nx.clear() ;nx.resize(n);

41

42

43

44

45

46

47

48

49

50

51

52

53

54

10

11

12

13

14

15

16

17

18

19

20

21

forn(x,n)if (pr[x]>=0)nx[pr[x]].pb(x);
bool stop=true;
mark.clear () ;mark.resize(n);
forn(x,n)if (x!=r&&'mark[x]&&!comp[x] .empty()){
found=false;visit(x,x);
if (found) stop=false;
}
if (stop){
forn(x,n)if (pr[x]>=0)cost+=mcost [x];
return cost;

2.6 LCA - Binary Lifting
vector<int> g[1<<K];int n; // K such that 27K>=n
int F[K] [1<<K],D[1<<K];
void lca_dfs(int x){

for(int y:gl[x]){if (y==F[0] [x])continue;
F[0] [yl=x;Dlyl=D[x]+1;1lca_dfs(y);
}
}
void lca_init(){
D[0]=0;F[0] [0]=-1;
lca_dfs(0);
forr(k,1,K)forn(x,n)
if (F[k-1] [x]1<0)F[k] [x]=-1;
else F[k] [x]=F[k-1] [F[k-1][x]];
}
int lca(int x, int y){
if (D[x]1<D[yl)swap(x,y);
for(int k=K-1;k>=0;--k)if (D[x]-(1<<k)>=D[y])x=F[k] [x];
if (x==y)return x;

for(int k=K-1;k>=0;--k)if (F[k] [x] '=F[k] [y])x=F [k] [x],y=F (k] [y];

return F[0] [x];

2.7 Heavy-Light decomposition

vector<int> g[MAXN];
int wg[MAXN],dad[MAXN] ,dep[MAXN]; // weight,father,depth
void dfsi(int x){

Universidad Nacional de Rosario - :$

CONTENTS - 2. GRAPHS

Page 9 of 25

10

11

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10

11

12

13

wglx]=1;
for(int y:glx])if(y!=dad[x]){
dad[y]l=x;deplyl=dep[x]+1;dfs1(y);
wg[x]+=ugly];
}
}
int curpos,pos[MAXN] ,head [MAXN] ;
void hld(int x, int c){
if (c<0)c=x;
pos [x]=curpos++;head [x]=c;
int mx=-1;
for(int y:glx])if (y!=dad[x]&&(mx<0| |wg[mx]<wgly]l))mx=y;
if (mx>=0)h1d (mx,c);
for(int y:glx])if (y!=mx&&y!=dad[x])hld(y,-1);
}
void hld_init(){dad[0]=-1;dep[0]=0;dfs1(0);curpos=0;h1d(0,-1);}
int query(int x, int y, STree& rmq){
int r=NEUT;
while(head[x] !=head[y]){
if (dep[head[x]]1>dep[head[y]])swap(x,y);
r=oper (r,rmq.query(pos[head[y]],pos[yl+1));
y=dad[head[y]];
}
if (dep[x]1>deplyl)swap(x,y); // now x is lca
r=oper (r,rmq.query(pos[x],pos[y]l+1));
return r;
}
// for updating: rmq.upd(pos[x],v);

2.8 Centroid decomposition

vector<int> g[MAXN];int n;
bool tk[MAXN];
int fat[MAXN]; // father in centroid decomposition
int szt[MAXN]; // size of subtree
int calcsz(int x, int f){
szt [x]=1;
for(auto y:glx])if (y!=f&&!tkly])szt[x]+=calcsz(y,x);
return szt[x];
}
void cdfs(int x=0, int f=-1, int sz=-1){ // O0(nlogn)
if (sz<0)sz=calcsz(x,-1);
for(auto y:glx])if (1tkl[y]&&szt [y]*2>=sz){
szt [x]=0;cdfs(y,f,sz) ;return;

14

15

16

17

18

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

}

tk[x]=true;fat[x]=f;

for(auto y:glx])if (1tk[yl)cdfs(y,x);
}
void centroid(){memset(tk,false,sizeof (tk));cdfs();}

2.9 Eulerian path

// Directed version (uncomment commented code for undirected)
struct edge {
int y;
// list<edge>::iterator rev;
edge(int y) :y(y{}
3
list<edge> g[MAXN];
void add_edge(int a, int b){
glal .push_front(edge(b));//auto ia=gla] .begin();
// glb] .push_front(edge(a));auto ib=g[b].begin();
// ida->rev=ib;ib->rev=ia;
}
vector<int> p;
void go(int x){
while(g[x] .size()){
int y=g[x] .front().y;
//gly] .erase(gl[x] .front() .rev);
glx] .pop_front();
go(y);
}
p-push_back(x) ;
}
vector<int> get_path(int x){ // get a path that begins in x
// check that a path exists from x before calling to get_path!
p.clear();go(x);reverse(p.begin(),p.end());
return p;

}

2.10 Dynamic connectivity

struct UnionFind {
int n,comp;
vector<int> uf,si,c;
UnionFind(int n=0) :n(n),comp(n) ,uf(n),si(n,1){
forn(i,n)uf[i]=i;}
int find(int x){return x==uf [x]?x:find(uf[x]);}

Universidad Nacional de Rosario - :$ CONTENTS - 2. GRAPHS Page 10 of 25

7 bool join(int x, int y){ 50 int k=dsu.snap() ,m=(s+e)/2;

8 if ((x=find(x))==(y=find(y)))return false; 51 for(int i=e-1;i>=m;--1i)if (mt[i]>=0&&mt [1]<s)dsu.join(q[i].x,q[i].y);
9 if (silx]<sily]l)swap(x,y); 52 go(s,m) ;dsu.rollback(k);

10 sil[x]+=sily] ;uf [yl=x;comp-—;c.pb(y); 53 for(int i=m-1;i>=s;--i)if(mt[i]>=e)dsu.join(ql[i].x,q[i].y);
11 return true; 54 go(m,e) ;dsu.rollback(k);

12 } 55 }

13 | int snap(){return c.size();} 56 |13

14 | void rollback(int snap){ 2.11 Edmond’s blossom (matching in general graphs)
15 while(c.size()>snap){

16 int x=c.back();c.pop_back(); 1 | vector<int> g[MAXN];

17 si[uf [x]]-=sil[x];uf [x]=x;comp++; > |int n,m,mt[MAXN],qh,qt,q[MAXN] ,ft [MAXN] ,bs [MAXN] ;
18 b 3 | bool ing[MAXN],inb[MAXN],inp[MAXN];
19 } 4 |int lca(int root, int x, int y){

20 | }; 5 memset (inp,0,sizeof (inp)) ;

21 |enum {ADD,DEL,QUERY}; 6 | while(1){

22 | struct Query {int type,x,y;}; 7 inp [x=bs[x]]=true;

23 | struct DynCon { 8 if (x==root)break;

24 vector<Query> q; 9 x=ft[mt[x]];

25 UnionFind dsu; 10 }

26 vector<int> mt; 1 while(1){

27 map<pair<int,int>,int> last; 12 if (inp[y=bs[yl]l)return y;

2s | DynCon(int n):dsu(n){} 13 else y=ft[mt[yl];

29 void add(int x, int y){ 14 }

30 if (x>y)swap(x,y) ; 15 |}

81 q.pb((Query) {ADD,x,y}) ;mt.pb(-1) ;last [mp(x,y)]1=q.size()-1; 16 | void mark(int z, int x){

32 } 17 while(bs[x]!=2){

33 void remove(int x, int y){ // the edge to remove must exist 18 int y=mt[x];

34 if (x>y)swap(x,y); 19 inb[bs[x]]=inb[bs[y]]=true;

35 q.pb((Query){DEL,x,y}); 20 x=ft[yl;

36 int pr=last[mp(x,y)];mt[prl=q.size()-1;mt.pb(pr); 21 if (bs[x] '=z)ft[x]=y;

37 } 22 }

ss | void query(){q.pb((Query){QUERY,-1,-1});mt.pb(-1);} 23 |}

39 void process(){ // answers all queries in order 24 |void contr(int s, int x, int y){

40 if(!q.size())return; 25 int z=lca(s,x,y);

a forn(i,q.size())if(q[i].type==ADD&&mt [i]<0)mt [i]=q.size(); 26 | memset(inb,0,sizeof(inb));

12 go(0,q.81ze()); 27 mark(z,x) ;mark(z,y);

13 } 28 if (bs[x]!'=2z)ft[x]=y;

a1 | void go(int s, int e){ 20 | if (bslyl!=2)ft[yl=x;

a5 if (s+1==e){ 30 forn(x,n)if (inb[bs[x]]1){

16 if(q[s].type==QUERY) // answer query using DSU a1 bs[x]=z;

a7 printf ("}d\n",dsu.comp) ; 32 if (1inq[x])inq[q[++qt]=x]=true;
48 return; 33 }

49 } 34 }

Universidad Nacional de Rosario - :$

CONTENTS - 3. MATH

Page 11 of 25

35 |int findp(int s){

— 2 2
Fyp = n+1_Fn71

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

memset (ing,0,sizeof (ing));
memset (ft,-1,sizeof (ft));
forn(i,n)bs[i]=i;
inq[q[qh=qt=0]=s]=true;
while(gh<=qt){
int x=q[qh++];
for(int y:glx])if (bs[x] !=bs[yl&&mt [x] !=y){

if (y==s| |mt [y]>=08&&£t [mt [y]]>=0) contr(s,x,y);

else if (ft[y]1<0){
ftlyl=x;
if (mt [y]<0)return y;

else if(!inqg[mt[yl])inqg[q[++qt]l=mt[y]l]l=true;

}
}
}
return -1;
}
int aug(int s, int t){
int x=t,y,z;
while(x>=0){
y=ft[x];
z=mt [y];
mt [y]=x;mt [x]=y;
X=Z;
}
return t>=0;
}
int edmonds(O){ // 0(n"2 m)
int r=0;
memset (mt,-1,sizeof(mt));
forn(x,n)if (mt [x]<0)r+=aug(x,findp(x));
return r;

}

3 Math
3.1 Identities

2(2n—1
Cm i, O
Cn = n+1n(7?)
Cn ~ sairrm

(n) = O(log(log(n))) (number of divisors of n)

Fong1 = Fp + FL

Z?:l Fz = Fn+2 —1
FrotiFnyy — FuFnyivy = (Z1)"EFiF)

10

11

(Mébius Inv. Formula) Let g(n) = 3-,,, f(d), then f(n) =3"d | ng(d)n (%))

3.2 Theorems

(Tutte) A graph, G = (V, E), has a perfect matching if and only if for
every subset U of V, the subgraph induced by V - U has at most |U|
connected components with an odd number of vertices.

Petersens Theorem. Every cubic, bridgeless graph contains a perfect
matching.

(Dilworth) In any finite partially ordered set, the maximum number of
elements in any antichain equals the minimum number of chains in any
partition of the set into chains

Pick: A=I+B/2-1 (area of polygon, points inside, points on border)

3.3 Integer floor division

void floordiv(1l x, 11 y, 11& q, 11& r) { // (for negative x)
q=x/y;r=xy;
1if ((r!=0)&& ((r<0) '=(y<0)))q--,r+=y;

}

3.4 Extended Euclid

11 euclid(1l a, 11 b, 11& x, 11& y){ // a*x(xtkx(b/d))+b*(y-k*(a/d))=d
if (Ib){x=1;y=0;return a;} // (for any k)
11 d=euclid(b,a%b,x,y);
11 t=y;y=x-(a/b)*y;x=t;
return d;

}
3.5 Pollard’s rho

11 gcd(1l a, 11 b){return a?gcd(bla,a):b;}
ull mulmod(ull a, ull b, ull m){ // 0 <= a, b <m
long double x; ull c; 11 r;
x=a; c=xx*b / m
r= Q1)@ *b-cx*m % (11)m;
returnr < 0 ?7r +m : r;
}
11 expmod(1l b, 11 e, 11 m){
if(le)return 1;
11 g=expmod(b,e/2,m) ;q=mulmod(q,q,m) ;
return e&17mulmod(b,q,m):q;

Universidad Nacional de Rosario - :$

CONTENTS - 3.

MATH

12

13

14

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

}
bool is_prime_prob(ll n, int a){
if (n==a)return true;
11 s=0,d=n-1;
while(d%2==0)s++,d/=2;
11 x=expmod(a,d,n);
if ((x==1)| | (x+1==n))return true;
forn(_,s-1){
x=mulmod (x,x,n) ;
if (x==1)return false;
if (x+1==n)return true;
}
return false;
}
bool rabin(1l n){ // true iff n is prime
if (n==1)return false;
int ar(]={2,3,5,7,11,13,17,19,23};
forn(i,9)if (!is_prime_prob(n,ar[i]))return false;
return true;
}
11 rho(11 n){
if (' (n&l1))return 2;
11 x=2,y=2,d=1;
11 c=rand()%n+1;
while(d==1){
x=(mulmod(x,x,n)+c)%n;
y=(mulmod(y,y,n)+c)¥%n;
y=(mulmod(y,y,n)+c)n;
if (x>=y)d=gcd (x-y,n) ;
else d=gcd(y-x,n);
}
return d==n7rho(n) :d;
}
void fact(1l n, map<ll,int>& £f){ //0 (1g n)"3
if (n==1)return;
if (rabin(n)) {f [n]++;return;’}
11 g=rho(n);fact(q,f);fact(n/q,f);
}

3.6 Simpson’s rule
double integrate(double f(double), double a, double b, int n=10000){

double r=0,h=(b-a)/n,fa=f(a),fb;
forn(i,n){

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

fb=f (a+h*(i+1));

r+=fa+4xf (a+h* (i+0.5)) +fb;fa=fb;
}
return r*h/6.;

}
3.7 Polynomials

typedef int tp; // type of polynomial
template<class T=tp>
struct poly { // poly<> :
vector<T> c;
T& operator[] (int k){return c[k];}
poly(vector<T>& c):c(c){}
poly(initializer_list<T> c):c(c){}
poly(int k):c(k){}
poly O{}
poly operator+(poly<T> o0){
int m=c.size(),n=o0.c.size();
poly res(max(m,n));
forn(i,m)res[il=res[i]l+c[il;
forn(i,n)res[il=res[i]+o.c[i];
return res;
}
poly operator*(tp k){
poly res(c.size());
forn(i,c.size())res[il=c[i]*k;
return res;
}
poly operator*(poly o){
int m=c.size(),n=o0.c.size();
poly res(m+n-1);
forn(i,m)forn(j,n)res[i+jl=res[i+jl+c[il*o.c[j];
return res;
}
poly operator-(poly<T> o){return *this+(o*-1);}
T operator() (tp v){
T sum(0);
for(int i=c.size()-1;i>=0;--1i)sum=sum*v+c[i];
return sum;
}
3
// example: p(x,y)=2%x"2+3*x*xy-y+4
// poly<poly<>> p={{4,-1},{0,3},{2}}

1 variable, poly<poly<>>: 2 variables, etc.

Page 12 of 25

Universidad Nacional de Rosario - :$

CONTENTS - 3. MATH

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

77

78

// printf ("%d\n",p(2)(3)) // 27 (p(2,3))
set<tp> roots(poly<> p){ // only for integer polynomials
set<tp> r;
while(!p.c.empty()&&'p.c.back())p.c.pop_back();
if(!p(0))r.insert(0);
if(p.c.empty())return r;
tp a0=0,an=abs(plp.c.size()-11);
for(int k=0;!a0;a0=abs(p[k++]));
vector<tp> ps,qgs;
forr(i,1,sqrt(a0)+1)if (a0%i==0)ps.pb(i),ps.pb(a0/i);
forr(i,1,sqrt(an)+1)if (an%i==0)qgs.pb(i),gs.pb(an/i);
for(auto pt:ps)for(auto qt:qgs)if (ptihqt==0){
tp x=pt/qt;
if(Ip(x))r.insert(x);
if(!p(-x))r.insert(-x);
}
return r;

}

pair<poly<>,tp> ruffini(poly<> p, tp r){ // returns pair (result,rem)

int n=p.c.size()-1;
vector<tp> b(n);
b[n-1]=p[n];
for(int k=n-2;k>=0;--k)b[k]=p[k+1]+r*b[k+1];
return mp(poly<>(b),p[0]+r*b[0]);
}
// only for double polynomials

pair<poly<>,poly<> > polydiv(poly<> p, poly<> q){ // returns pair (result,

rem)

int n=p.c.size()-q.c.size()+1;

vector<tp> b(n);

for(int k=n-1;k>=0;--k){
b[k]=p.c.back()/q.c.back();
forn(i,q.c.size())pli+k]-=blkl*q[il;
p.c.pop_back();

while(!p.c.empty()&&abs(p.c.back())<EPS)p.c.pop_back();
return mp(poly<>(b),p);

}

// only for double polynomials

poly<> interpolate(vector<tp> x, vector<tp> y){ //TODO TEST
poly<> q={1},5={0};
for(tp a:x)g=poly<>({-a,1})*q;
forn(i,x.size()){

79

80

81

82

83

84

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

poly<> Li=ruffini(q,x[i]).fst;
Li=Li*(1.0/Li(x[i])); // change for int polynomials
S=S+Li*y[i];

}

return S;

}

3.8 Bairstow

double pget(poly<>& p, int k){return k<p.c.size()7p[k]:0;}
poly<> bairstow(poly<> p){ // returns polynomial of degree 2 that
int n=p.c.size()-1; // divides p
assert (n>=3&&abs (p.c.back())>EPS) ;
double u=p[n-1]1/p[n],v=p[n-2]1/p[nl;
forn(_,ITER){
auto w=polydiv(p,{v,u,1});
poly<> g=w.fst,rO=w.snd;
poly<> ri=polydiv(q,{v,u,1}).snd;
double c=pget(r0,1),d=pget(r0,0),g=pget(rl,1) ,h=pget(r1,0);
double det=1/(vkg*g+h* (h-u*g)) ,uu=u;
u-=det* (~hxc+g*d) ; v—=det* (-g*v*c+(gruu-h) *d) ;

}
return {v,u,1};
}
void addr(vector<double>& r, poly<>& p){
assert(p.c.size()<=3);
if(p.c.size()<=1)return;
if (p.c.size()==2)r.pb(-p[0]/p[1]);
if(p.c.size()==3){
double a=p[2],b=p[1],c=p[0];
double d=bx*b-4*axc;
if(d<-0.1)return; // huge epsilon because of bad precision
d=d>07sqrt(d) :0;r.pb((-b-d)/2/a) ;r.pb((-b+d)/2/a);
}
}
vector<double> roots(poly<> p){
while(!p.c.empty()&&abs(p.c.back())<EPS)p.c.pop_back();
forn(i,p.c.size())plil/=p.c.back();
vector<double> r;int n;
while((n=p.c.size()-1)>=3){
poly<> g=bairstow(p);addr(r,q);
p=polydiv(p,q) .fst;
while(p.c.size(D>n-1)p.c.pop_back();

Page 13 of 25

Universidad Nacional de Rosario - :$

CONTENTS - 3. MATH

36

37

38

39

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

}
addr(r,p);
return r;

3

3.9 Fast Fourier Transform

struct CD { // or typedef complex<double> CD; (but 4x slower)
double r,i;
CD(double r=0, double i=0):r(r),i(i){}
void operator/=(const int c){r/=c, i/=c;}
};
CD operator*(const CD& a, const CD& b){
return CD(a.r*b.r-a.i*b.i,a.r*b.i+a.i*b.r);}
CD operator+(const CD& a, const CD& b){return CD(a.r+b.r,a.i+b.i);}
CD operator-(const CD& a, const CD& b){return CD(a.r-b.r,a.i-b.i);}
const double pi=acos(-1.0);
CD cp1l[MAXN+9],cp2[MAXN+9] ,w[MAXN+9]; // MAXN must be power of 2 !!
int R[MAXN+9];
void dft(CD* a, int n, bool inv){
forn(i,n)if (R[il<i)swap(al[R[il],alil);
for(int m=2;m<=n;m*=2){
double z=2+*pi/m*(inv?-1:1);
CD wi=CD(cos(z),sin(z));
for(int j=0;j<n;j+=m){
w[0]=1;
for(int k=j,k2=j+m/2,t=1;k2<j+m;k++,k2++,t++){
CD u=alk] ;CD v=al[k2]*w[t-1];alk]=ut+v;al[k2]=u-v;
wlt]=tV2rwixw[t-1] :wlt/2]*w[t/2];
}
}
}
if(inv)forn(i,n)alil/=n;
+
vector<int> multiply(vector<int>& pl, vector<int>& p2){
int n=pl.size()+p2.size()+1;
int m=1,cnt=0;
while (m<=n)m+=m, cnt++;
forn(i,m){R[i]=0;forn(j,cnt)R[i]=R[1]1<<1) | ((i>>j)&1);}
forn(i,m)cp1[il=0,cp2[i]=0;
forn(i,pl.size())cpil[il=p1[il;
forn(i,p2.size())cp2[il=p2[i];
dft(cpl,m,false) ;dft(cp2,m,false);
forn(i,m)cpll[il=cpl[il*cp2[i];

38

39

40

41

42

43

10

11

12

13

14

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

dft(cpl,m,true);

vector<int> res;

n-=2;
forn(i,n)res.pb((11)floor(cpl[i] .r+0.5));
return res;

}
3.10 Fast Hadamard Transform

11 c1[MAXN+9],c2[MAXN+9]; // MAXN must be power of 2 !!
void fht(1l* p, int n, bool inv){
for(int 1=1;2%1<=n;1*=2){
for(int i=0;i<n;i+=2x%1){
forn(j,1){
11 u=pli+j],v=pli+l+j];
// XOR
if(tinv)pli+jl=utv,pl[i+l+jl=u-v;
else plitjl=(u+v)/2,pli+l+jI=(u-v)/2;
// AND
//if(Minv)pli+jl=v,pli+l+jl=u+tv;
//else pli+jl=-utv,pli+l+j]=u;
// OR
//if (Minv)pli+jl=utv,p[i+l+jl=u;
//else plit+jl=v,pli+l+jl=u-v;
}
}
}
}
// like polynomial multiplication, but XORing exponents
// instead of adding them (also ANDing, ORing)
vector<1l> multiply(vector<1ll>& pl, vector<ll>& p2){
int n=1<<(32-__builtin_clz(max(sz(pl) ,sz(p2))-1));
forn(i,n)c1[i]l=0,c2[i]=0;
forn(i,sz(pl))ci[i]l=p1[i]l;
forn(i,sz(p2))c2[i]=p2[i];
fht(cl,n,false) ;fht(c2,n,false);
forn(i,n)cl1[il*=c2[i];
fht(cl,n,true);
return vector<11l>(cl,cl+n);

3.11 Karatsuba

1 ‘typedef 11 tp;

Page 14 of 25

Universidad Nacional de Rosario - :$ CONTENTS - 3. MATH Page 15 of 25
2 |#define add(n,s,d,k) forn(i,n)(d) [i]1+=(s) [i]*k 7 11 g = __gcd(a, m); if(b%g) return false;

3 |tp* ini(int n){tp *r=new tp[n];fill(r,r+n,0);return r;} s a/=g; b/=g; m/=g; b = b*inv(a, m)/m; a = 1;

4 |void karatsura(int n, tpx p, tpx q, tpx r){ 9 return true;

5 if (n<=0)return; 10 }

6 if (n<35)forn(i,n)forn(j,n)r[i+jl+=p[il*q[j]; u |}

18

19

20

21

22

23

24

25

26

27

28

29

30

31

else {
int nac=n/2,nbd=n-n/2;
tp *a=p,*b=p+nac,*c=q,*d=q+nac;

12

13

14

tp *ab=ini(nbd+1),*cd=ini(nbd+1) ,*ac=ini(nac*2) ,*bd=ini(nbd*2) ; 15

add(nac,a,ab,1) ;add(nbd,b,ab,1);
add(nac,c,cd, 1) ;add(nbd,d,cd,1);
karatsura(nac,a,c,ac) ;karatsura(nbd,b,d,bd) ;
add(nac*2,ac,r+nac,-1);
add(nbd*2,bd,r+nac,-1);
add(nac*2,ac,r,1);
add(nbd*2,bd,r+nac*2,1) ;
karatsura(nbd+1,ab,cd,r+nac) ;
free(ab) ;free(cd) ;free(ac) ;free(bd) ;
}
}
vector<tp> multiply(vector<tp> p0, vector<tp> p1){
int n=max(p0.size(),pl.size());
tp *p=ini(n),*q=ini(n),*r=ini(2+*n);
forn(i,p0.size())plil=p0[il;
forn(i,pl.size())qlil=p1[il;
karatsura(n,p,q,r);
vector<tp> rr(r,r+p0.size()+pl.size()-1);
free(p) ;free(q) ;free(r);
return rr;

3.12 Modular inverse

inv[1]l=1; //0(MAXN), i*inv[i] = 1 mod p, MAXN <= p
forr(i, 2, MAXN) inv[il=p-((11) (p/i)*inv[p%il)%p;

3.13 Chinese remainder theorem (Euge)

#define mod(a, m) (((a)¥%m + m)%m)

struct Meq { // requires euclid, inv, mulmod (from pollard rho)
11 a, b, m; // a*x = b (mod m)
Meq(1la=0, 11 b=0, 11 m=0): a(a), b)), mm{}
bool norm(){ // returns false if equation is not consistent

a =mod(a, m); b = mod(b, m);

16

17

18

19

20

10

11

12

13

14

15

16

17

18

19

20

21

Meq Euge(Meq S, Meq T){ // Requires S, T to be normalized first
11 x, y, g = euclid(S.m, -T.m, x, y);
if(g < 0) x = -1, y %= -1, g *= -1;
if((8.b - T.b)%g) return Meq(); // returns m =
11 M=8S.mx* (T.m/g), r = (T.b - S.b)/g;
x = mulmod(x, r, M);
11 A = mod(mulmod(S.m, x, M) + S.b, M);
return Meq(1l, A, M);

3.14 Mobius

short mu[MAXN] = {0,1};
void mobius(){

forr(i,1,MAXN)if (mu[i]l)for(int j=i+i;j<MAXN;j+=1i)muljl-=muli];
}

3.15 Linear Recurrence

struct LRecq{
int n; vector<int> In, T; vector<vector<int>> B;
vector<int> add(vector<int> &a, vector<int> &b){
vector<int> ans(2*n+1, 0);
forn(i, n+1)forn(j, nt+l)
ans[i+j] = (ams[i+j] + (11)al[i]l*b[j]%MOD + MOD)?%MOD;
for(int i = 2*n; i > n; i--)forn(j, n)

0 if not consistent

ans[i-1-j] = (ans[i-1-j] + (11)ans[i]*T[j]1%MOD + MOD)%MOD;

ans.resize(n+1); return ans; }
LRec(vector<int> V, vector<int> T): In(V), T(T){
n = sz(V);
vector<int> a(n+1, 0);
al1] = 1; B.pb(a);
forr(i, 1, LOG) B.pb(add(B[i-1], B[i-11)); }
calc(11l k){
vector<int> a(nt+l, 0); al[0] = 1;
forn(i, LOQ)if(k>>i&1)a = add(a, B[il]);
int ret = 0;
forn(i, n)ret = (ret + (11)a[i+1]*In[i]%MOD + MOD)’MOD;
return ret; }

int

Universidad Nacional de Rosario - :$

CONTENTS - 4. GEOMETRY

3.16 Gaussian Elimination

double reduce(vector<vector<double> >& x){ // returns determinant
int n=x.size() ,m=x[0] .size();
int i=0,j=0;double r=1.;
while (i<n&&j<m){
int 1=i;
forr(k,i+1,n)if (abs(x[k] [j1)>abs(x[1] [j]))1=k;
if (abs(x[1] [j1)<EPS){j++;r=0.;continue;}
if (U1=i){r=-r;swap(x[i],x[1]);}
rx=x[1] [j];
for(int k=m-1;k>=j;k—-)x[i] [k]/=x[i] [j];
forn(k,n){
if (k==i)continue;
for(int l=m-1;1>=j;1--)x[k] [1]-=x[k] [j1*x[i] [1];
}
it+;j++s
}
return r;

}
3.17 Simplex

vector<int> X,Y;
vector<vector<double> > A;
vector<double> b,c;
double z;
int n,m;
void pivot(int x,int y){
swap(X[yl,Y[x1);
b[x]/=A[x] [y];
forn(i,m)if (i!=y)A[x] [1]1/=A[x] [y];
Alx] [yl=1/A1x]1 [y];
forn(i,n)if (i'!=x&&abs(A[i] [y])>EPS){
b[i]-=A[i] [yl*b[x];
forn(j,m)if (j!=y)A[i] [j1-=A[1i] [y]*A[x] [j];
ATi] [yl=-A[i] [yl *A[x] [y];
}
z+=c[yl*b[x];
forn(i,m)if (i'=y)cl[i]l-=clyl*A[x] [i];
clyl=-clyl*A[x] [y];
}
pair<double,vector<double> > simplex(// maximize c T x s.t. Ax<=b, x>=0
vector<vector<double> > _A, vector<double> _b, vector<double> _c){

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

// returns pair (maximum value, solution vector)
A=_A;b=_b;c=_c;
n=b.size() ;m=c.size();z=0.;
X=vector<int>(m) ; Y=vector<int>(n);
forn(i,m)X[i]=1i;
forn(i,n)Y[i]=i+m;
while(1){
int x=-1,y=-1;
double mn=-EPS;
forn(i,n)if (b[i]<mn)mn=b[i],x=1;
if (x<0)break;
forn(i,m)if (A[x] [1]<-EPS){y=i;break;}
assert(y>=0); // no solution to Ax<=b
pivot(x,y);
}
while(1){
double mx=EPS;
int x=-1,y=-1;
forn(i,m)if (c[il>mx)mx=c[i],y=1;
if (y<0)break;
double mn=1e200;
forn(i,n)if (A[i] [y]>EPS&&b[i]/A[1] [y]l<mn)mn=b[i] /A[i] [y],x=1i;
assert(x>=0); // ¢ T x is unbounded
pivot(x,y);
}
vector<double> r(m);
forn(i,n)if (Y[il<m)r[Y[i]]1=b[i];
return mp(z,r);

4 Geometry
4.1 Point

bool left(pt p, pt @){ // is it to the left of directed line pq?
return (g-p)%(*¥this-p)>EPS;}

pt rot(pt r){return pt(*this¥r,*this*r);}

pt rot(double a){return rot(pt(sin(a),cos(a)));>}

pt ccw90(1,0); pt cw90(-1,0);

4.2 Line

int sgn2(double x){return x<07-1:1;}
struct 1n {

pt p,pa;

Page 16 of 25

Universidad Nacional de Rosario - :$ CONTENTS - 4. GEOMETRY Page 17 of 25

4| 1n(pt p, pt @) :p(),pala-p){} 1 pt v=(c.0-0)/d;
5 InO{} 12 s.pb(otvxx-v.rot (ccw90) *y) ;
6 bool has(pt r){return dist(r)<EPS;} 13 if (y>EPS)s.pb(o+vxx+v.rot(ccwd0) *y) ;
7 bool seghas(pt r){return has(r)&&(r-p)*(r-(p+pq))-EPS<0;} 14 return s;
s |// bool operator /(1n 1){return (pq.unit()"1l.pq.unit()).norm()<EPS;} // 3D 15 }
9 bool operator/(ln 1){return abs(pq.unit()%1l.pq.unit())<EPS;} // 2D 16 vector<pt> operator”(ln 1){
10 bool operator==(1ln 1){return *this/1&&has(1l.p);} 17 vector<pt> s;
11 pt operator”(1n 1){ // intersection 18 pt p=1l.proj(o);
12 if (#this/1l)return pt(DINF,DINF); 19 double d=(p-o0).norm();
13 pt r=1l.p+1l.pg*x((p-1.p)%pa/ (1.pqkpa)); 20 if (d-EPS>r)return s;
| // if ('has(r)){return pt(NAN,NAN,NAN);} // check only for 3D 21 if (abs(d-r)<EPS){s.pb(p) ;return s;}
15 return r; 22 d=sqrt (r*r-d*d) ;
16 } 23 s.pb(ptl.pq.unit()*d) ;
17 double angle(ln 1l){return pq.angle(l.pq);} 24 s.pb(p-1.pq.unit()*d);
18 int side(pt r){return has(r)7?0:sgn2(pgk(x-p));} // 2D 25 return s;
19 pt proj(pt r){return p+pg*((r-p)*pq/pq.norm2());} 26 }
20 pt ref(pt r){return proj(r)*2-r;} 27 vector<pt> tang(pt p){
21 double dist(pt r){return (r-proj(r)).norm();} 28 double d=sqrt((p-o) .norm2()-r*r);
22 | // double dist(ln 1){ // only 3D 29 return *this“circle(p,d);
23 | // if (*this/1)return dist(1l.p); 30 }
21 | // return abs((1.p-p)*(pq~l.pq))/(pq~1l.pq) .norm() ; 31 double intertriangle(pt a, pt b){ // area of intersection with oab
25 | // T 32 if (abs((o-a)%(o-b))<EPS)return O.;
26 1n rot(auto a){return 1n(p,ptpq.rot(a));} // 2D 33 vector<pt> g={a},w=+this~1n(a,b);
27 |} 34 if(w.size()==2)for(auto p:w)if ((a-p)*(b-p)<-EPS)q.pb(p);
2s | 1n bisector(ln 1, 1In m){ // angle bisector 35 q.pb(b);
20 pt p=1"m; 36 if(q.size O==4&&(q[0]1-q[1]1)*(q[2]-q[1])>EPS)swap(q[1],q[2]);
30 return ln(p,p+l.pq.unit()+m.pq.unit()); a7 double s=0;
31 |} 38 forn(i,q.size(D-1){
s2 | 1n bisector(pt p, pt @){ // segment bisector (2D) 39 if(thas(ql[il) | | thas(q[i+1]))s+=r*r*(q[i]l-o0) .angle(q[i+1]-0)/2;
33 return 1n((p+q)*.5,p) .rot(ccw90); 10 else s+=abs((ql[i]l-0)%(qli+1]-0)/2);
34 } 41 }
4.3 Circle 42 return s;
43 }
1 | struct circle { as |}
R pt o;double r; 15 | vector<double> intercircles(vector<circle> c){
3 circle(pt o, double r):o(o),r(r){} 16 vector<double> r(sz(c)+1); // rlkl: area covered by at least k circles
1| circle(pt x, pt v, pt z){o=bisector(x,y) bisector(x,z);r=(o-x) .norm();} ar | forn(i,sz(c)){ // 00”2 log n) (high constant)
5 | vector<pt> operator”(circle c){ // ccw 18 int k=1;Cmp s(c[i].o0);
6 vector<pt> s; 49 vector<pair<pt,int> > p={
7 double d=(o-c.0).norm(); 50 mp(c[i].o+pt(1,0)*c[i].r,0),
8 if (d>r+c.r+EPS| |d+min(r,c.r) +EPS<max(r,c.r))return s; 51 mp(c[i].o-pt(1,0)*c[i].r,0)};
9 double x=(d*d-c.r*c.rT+r*1r)/(2*d); 52 forn(j,sz(c))if (j!=i){
0 double y=sqrt (r*r-x*x); 53 bool bO=c[i].in(c[j]1),bl=c[j].in(c[i]);

Universidad Nacional de Rosario - :$ CONTENTS - 4. GEOMETRY Page 18 of 25

54 if (b0&& (o1] [i<j) I k++; 22 forn(i,n)s[i]=p[(pi+i)¥n];
55 else if (!bO&&!b1){ 23 p.swap(s);
56 auto v=c[i]"c[j]; 24 T
57 if (sz(v)==2){ 25 | bool haslog(pt g){ // 0(log(n)) only CONVEX. Call normalize first
58 p.pb(mp(v[0],1));p.pb(mp(v(1],-1)); 26 if(q.left(p[0],p[11) | 1q.1left(p.back(),pl0]))return false;
59 if (s(v[1],v[0]))k++; 27 int a=1,b=p.size()-1; // returns true if point on boundary
60 } 28 while(b-a>1){ // (change sign of EPS in left
61 } 29 int c=(a+b)/2; // to return false in such case)
62 } 30 if(!q.left(p[0],plcl))a=c;
63 sort(p.begin(),p.end(), 31 else b=c;
64 [&] (pair<pt,int> a, pair<pt,int> b){return s(a.fst,b.fst);}); 32 }
65 forn(j,sz(p)){ 33 return !q.left(plal,pla+1]);
66 pt pO=plj?j-1:sz(p)-1].fst,pl=p[j].fst; 34 }
67 double a=(pO-c[i].o).angle(pl-c[i].o); ss | pt farthest(pt v){ // 0(log(n)) only CONVEX
68 r[k]+=(p0.x-pl.x)*(p0.y+pl.y)/2+c[i] .r*c[i] .r*(a-sin(a))/2; 36 if (n<10)4{
69 k+=p[j].snd; 37 int k=0;
70 } 38 forr(i,1,n)if (vx(p[i]-p[k])>EPS)k=1i;
71 } 39 return p[k];
72 return r; 40 iy
73 |+ a1 if (n==sz(p))p.pb(p[0]);
4.4 Polygon 2 pt a=p[1]-p[0];
43 int s=0,e=n,ua=v*a>EPS;

1 |int sgn(double x){return x<-EPS?7-1:x>EPS;} 44 if (luak&v* (p[n-1]1-p[0])<=EPS)return p[0];

2 | struct pol { 45 while(1){

3 int n;vector<pt> p; 46 int m=(s+e)/2;pt c=plm+1]-p[m];

4 polO{} a7 int uc=vxc>EPS;

5 | pol(vector<pt> _p){p=_p;n=p.size();} a8 if (luck&v* (p[m-1]-p[m])<=EPS)return p[m];

6 | bool has(pt q){ // 0(n) 49 if (uak& (tuc| [v*(p[s]-p[ml)>EPS))e=m;

7 forn(i,n)if (In(p[i],p[(i+1)%n]) .seghas(q))return true; 50 else if(ualluc||v*(p[s]-pl[m])>=-EPS)s=m,a=c,ua=uc;

8 int cnt=0; 51 else e=m;

9 forn(i,n){ 52 assert(e>s+1);

10 int j=(i+1)Yn; 53 }

11 int k=sgn((q-p[j1)%(plil-p[i1)); 54 }

12 int u=sgn(p[il.y-q.y),v=sgn(p[jl.y-q.y); 55 pol cut(ln 1){ // cut CONVEX polygon by line 1

13 if (k>0&&u<0&&v>=0) cnt++; 56 vector<pt> q; // returns part at left of 1.pg

14 1if (k<0&&v<0&&u>=0) cnt—-; 57 forn(i,n){

. } 58 int dO=sgn(1.pqk(plil-1.p)),d1=sgn(l.pq%(pL(i+1)%n]-1.p));
16 return cnt!=0; 59 if(d0>=0)q.pb(p[il);

|} 60 In m(p[il,p[(+1)%nl);

18 void normalize(){ // (call before haslog, remove collinear first) 61 1f(d0*d1<0&&! (1/m))q.pb(17m);

" if (p[2] .1eft(p[0],p[1]))reverse(p.begin(),p.end)); 62 }
20 int pi=min_element(p.begin(),p.end())-p.begin(); 63 return pol(q);
21 vector<pt> s(n); 64 }

Universidad Nacional de Rosario - :$

CONTENTS - 5. STRINGS

Page 19 of 25

65

66

67

68

69

70

71

T2

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

double intercircle(circle c){ // area of intersection with circle
double r=0.;
forn(i,n){
int j=(i+1)%n;double w=c.intertriangle(pl[il,p[jl);
if((pljl-c.0)%(plil-c.0)>0) r+=u;
else r—=w;
}
return abs(r);
}
double callipers(){ // square distance of most distant points
double r=0; // prereq: convex, ccw, NO COLLINEAR POINTS
for(int i=0,j=n<270:1;i<j;++i){
for(;;j=G+1)%n){
r=max(r, (p[i]l-p[j]l) .norm2());
if ((p[(A+1)%n]-p[i])%(p[(j+1)%n]-p[j]1)<=EPS)break;
}
}
return r;
}
};
// Dynamic convex hull trick
vector<pol> w;
void add(pt q){ // add(q), 0(log™2(n))
vector<pt> p={q};
while(!w.empty () &&sz(w.back() .p)<2*sz(p)){
for(pt v:w.back().p)p.pb(v);
w.pop_back() ;
}
w.pb(pol(chull(p)));

}

11 query(pt v){ // max(g*v:q in w), 0(log™2(n))
11 r=-INF;
for(auto& p:w)r=max(r,p.farthest(v)*v);
return r;

}

4.5 Plane

struct plane {
pt a,n; // n: normal unit vector
plane(pt a, pt b, pt c):a(a),n(((b-a)~(c-a)) .unit(O){}
plane O{}
bool has(pt p){return abs((p-a)*n)<EPS;}
double angle(plane w){return acos(n*w.n);}

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

10

11

12

13

14

15

16

17

18

1

double dist(pt p){return abs((p-a)*n);}
pt proj(pt p){inter(1n(p,p+n),p);return p;}
bool inter(ln 1, pt& r){
double x=n*(l.p+l.pg-a),y=n*(l.p-a);
if (abs(x-y)<EPS)return false;
r=(1.p*x-(1.p+l.pq)*y)/ (x-y);
return true;
}
bool inter(plane w, ln& r){
pt nn=n"w.n;
pt v=n"nn;
double d=w.n*v;
if (abs(d)<EPS)return false;
pt p=at+v*(w.n*x(w.a-a)/d);
r=1n(p,p+nn) ;
return true;

4.6 Convex hull

// CCW order
// Includes collinear points (change sign of EPS in left to exclude)
vector<pt> chull(vector<pt> p){
vector<pt> r;
sort(p.begin(),p.end()); // first x, then y
forn(i,p.size()){ // lower hull
while(r.size()>=2&&r.back() .left(r[r.size(0-2],p[il))r.pop_back();
r.pb(plil);
}
r.pop_back();
int k=r.size();
for(int i=p.size()-1;i>=0;--i){ // upper hull
while(r.size()>=k+2&&r .back() .left(r[r.size()-2],p[i]))r.pop_back();
r.pb(p[il);

}
r.pop_back();
return r;
}
5 Strings
5.1 KMP

vector<int> kmppre(string& t){ // rl[il: longest border of t[0,i)

Universidad Nacional de Rosario - :$

CONTENTS - 5. STRINGS

Page 20 of 25

11

12

13

14

11

12

13

vector<int> r(t.size()+1);r[0]=-1;
int j=-1;
forn(i,t.size()){
while(j>=0&&t [1]!'=t[j1)j=r[j];
rli+1]=++j;
}
return r;
}
void kmp(string& s, string& t){ // find t in s
int j=0;vector<int> b=kmppre(t);
forn(i,s.size()){
while(j>=0&&s[i]!'=t[j1)j=b[j]1;
if (++j==sz(t))printf ("Match at %d\n",i-j+1),j=b[jl;
}
}

5.2 Z function

vector<int> z_function(string& s){

int a=0,b=0,n=sz(s);

vector<int> z(n,0); // z[i] = max k: s[0,k) == s[i,i+k)

forr(i,1,n){
if (i<=b)z[i]=min(b-i+1,z[i-a]);
while(i+z[i]l<n&&s[z[i]]==s[i+z[i]])z[i]++;
if (i+z[i]-1>b)a=1i,b=i+z[i]-1;

}

return z;

}
5.3 Manacher

int d1[MAXN];//d1[i] = max odd palindrome centered on i
int d2[MAXN];//d2[i]
//s aabbaacaabbaa
//d1l 1111117111111
//d2 0103010010301
void manacher(string& s){
int 1=0,r=-1,n=s.size();
forn(i,n){
int k=i>r?1:min(d1[1+r-i],r-i);
while (i+k<n&&i-k>=0&&s [i+k]==s[i-k]) k++;
di[i]l=k-—-;
if (i+k>r)1=i-k,r=i+k;

}

max even palindrome centered on i

14

15

16

17

18

19

20

21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1=0;r=-1;

forn(i,n){
int k=i>r?0:min(d2[1+r-i+1],r-i+1) ;k++;
while (i+k<=n&&i-k>=08&&s [i+k-1]==s[i-k]) k++;
d2[i]=--k;
if (i+k-1>r)1=i-k,r=i+k-1;

}

}

5.4 Aho-Corasick

struct vertex {
map<char,int> next,go;
int p,link;
char pch;
vector<int> leaf;
vertex(int p=-1, char pch=-1):p(p),pch(pch),link(-1){}
3
vector<vertex> t;
void aho_init(){ //do not forget!!
t.clear();t.pb(vertex());
}
void add_string(string s, int id){
int v=0;
for(char c:s){
if (1t [v] .next.count(c)){
t[v] .next[c]l=t.size();
t.pb(vertex(v,c));
}
v=t[v] .next[c];
}
t[v].leaf.pb(id);
}
int go(int v, char c);
int get_link(int v){
if (t[v] .1ink<0)
if (vl 't [v].p)t[v].1link=0;
else t[v].link=go(get_link(t[v].p),t[v].pch);
return t[v].link;
}
int go(int v, char c){
if(1t[v].go.count(c))
if (t[v] .next.count(c))t[v] .golcl=t [v] .next[c];
else t[v].golcl=v==070:go(get_link(v),c);

Universidad Nacional de Rosario - :$

CONTENTS - 5. STRINGS

Page 21 of 25

34

35

20

21

22

23

24

10

11

return t[v].golcl;

}

5.5 Suffix automaton

struct state {int len,link;map<char,int> next;}; //clear next!!
state st[100005]; // should be >= 2*sz(s)
int sz,last;
void sa_init(){
last=st[0] .1len=0;sz=1;
st[0] .1link=-1;
}
void sa_extend(char c){
int k=sz++,p;
st[k] .len=st[last] .len+1;
for(p=last;p!=-1&&'st [p] .next.count(c) ;p=st[p] .link) st [p] .next [c]=k;
if (p==-1)st[k] .1ink=0;
else {
int g=st[p] .next[c];
if(st[p].len+1i==st[q] .1len)st[k] .link=q;
else {
int w=szt++;
st[w] .len=st[p] .len+1;
st [w] .next=st[q] .next;st[w] .link=st[q] .1link;
for(;p!=-1&&st[p] .next [c]==q;p=st [p] .1ink)st [p] .next [c]=w;
st[q] .link=st [k] .link=w;
}
}
last=k;
}

5.6 Suffix array

#define RB(x) (x<n?r[x]:0)

void csort(vector<int>& sa, vector<int>& r, int k){
int n=sa.size();
vector<int> f(max(255,n),0),t(n);
forn(i,n)f[RB(i+k)]++;
int sum=0;
forn(i,max(255,n))f[i]=(sum+=f[i])-f[i];
forn(i,n)t[f[RB(salil+k)]++]=salil;
sa=t;

}

vector<int> constructSA(string& s){ // 0(n logn)

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

10

11

12

13

14

int n=s.size() ,rank;
vector<int> sa(n),r(n),t(n);
forn(i,n)salil=i,r[il=s[i];
for(int k=1;k<n;k*=2){
csort(sa,r,k) ;csort(sa,r,0);
t[sa[0]]=rank=0;
forr(i,1,n){
if(r[salil]l'=r[sali-1]11||RB(sal[i]+k) !=RB(sal[i-1]+k))rank++;
t[sal[i]]=rank;
}
r=t;
if (r[sa[n-1]1==n-1)break;
}
return sa;

}
5.7 LCP (Longest Common Prefix)

vector<int> computeLCP(string& s, vector<int>& sa){
int n=s.size(),L=0;
vector<int> lcp(n),plcp(n),phi(n);
phil[sal0]]=-1;
forr(i,1,n)philsalil]=sali-1];
forn(i,n){
if (phi[i]1<0){plcp[i]l=0;continue;}
while(s[i+L]==s[phi [i]+L])L++;
plcplil=L;
L=max(L-1,0);
}
forn(i,n)lcplil=plcplsalil]l;
return lcp; // lcplil=LCP(sali-1],salil)
}

5.8 Suffix Tree (Ukkonen’s algorithm)

struct SuffixTree {

char s[MAXN];

map<int,int> to[MAXN];

int len[MAXN]={INF},fpos[MAXN],link[MAXN];

int node,pos,sz=1,n=0;

int make_node(int p, int 1){
fpos[sz]l=p;len[sz]=1;return sz++;}

void go_edge(){
while(pos>len[to[node] [s[n-pos]]1]1){

Universidad Nacional de Rosario - :$

CONTENTS - 6. FLOW

10

11

12

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

10

11

12

node=to [node] [s[n-posl];
pos—=len[node] ;
+
}
void add(int c){
s [n++]=c;pos++;
int last=0;
while(pos>0){
go_edge();
int edge=s[n-pos];
int& v=to[node] [edge] ;
int t=s[fpos[v]+pos-1];
if (v==0){
v=make_node (n-pos, INF) ;
link[last]=node;last=0;
}
else if(t==c){link[last]=node;return;}
else {
int u=make_node(fpos[v],pos-1);
to[u] [c]=make_node(n-1,INF);
to[u] [t]=v;
fpos[v]+=pos-1;len[v]-=pos-1;
v=u;link[last]=u;last=u;
}
if (node==0)pos—-;
else node=link[node] ;

}
};

5.9 Hashing

struct Hash {

int P=1777771,M0OD[2],PI[2];

vector<int> h[2],pil[2];

Hash(const string& s){
MOD[0]=999727999;M0OD[1]=1070777777;
PI[0]=325255434;PI[1]1=10018302;
forn(k,2)h[k] .resize(sz(s)+1),pilk] .resize(sz(s)+1);
forn(k,2){

h(k] [0]=0;pilk] [0]=1;
11 p=1;
forr(i,1,sz(s)+1){
h(x] [i]=(h[k] [i-1]+p*s[i-1])%MOD [k] ;

13

14

15

16

17

18

19

20

21

22

23

24

25

10

11

12

13

14

15

16

pilk] [i1=(1LL#*pi [k] [i-1]1*PI[k])%MOD[k] ;
p=(p*P) /MOD [k] ;
}
}
}
11 get(int s, int e){
11 r[2]; forn(k, 2){
r[k]=(h[k] [e]-h[k] [s]+MOD[k])%MOD [k] ;
r [k]=(1LL*r [k] *pi [k] [s])%MOD [k] ;
}
return (r[0]<<32)|r[1];
}
};

6 Flow
6.1 Matching (slower)

vector<int> g[MAXN]; // [0,n)->[0,m)
int n,m;
int mat [MAXM] ;bool vis[MAXN];
int match(int x){
if (vis[x])return 0O;
vis[x]=true;

for(int y:glx])if (mat[y]<0| |match(mat[y])){mat[y]l=x;return 1;}

return O;
}
vector<pair<int,int> > max_matching(){

vector<pair<int,int> > r;

memset (mat,-1,sizeof (mat));

forn(i,n)memset(vis,false,sizeof (vis)) ,match(i);

forn(i,m)if (mat[i]>=0)r.pb(mp(mat[i],i));

return r;

6.2 Matching (Hopcroft-Karp)

vector<int> g[MAXN]; // [0,n)->[0,m)
int n,m;
int mt[MAXN] ,mt2[MAXN],ds[MAXN];
bool bfs(){
queue<int> q;
memset(ds,-1,sizeof(ds));
forn(i,n)if (mt2[i]<0)ds[i]=0,q.push(i);
bool r=false;

Page 22 of 25

Universidad Nacional de Rosario - :$

CONTENTS - 6. FLOW

Page 23 of 25

9

10

11

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

while(!q.empty()){
int x=q.front();q.popQ);
for(int y:glx]){
if (mt [y]>=0&&ds [mt [y]]1<0)ds [mt [y]]=ds[x]+1,q.push(mt [y]);
else if (mt[y]<0)r=true;
}
}
return r;
}
bool dfs(int x){
for(int y:gl[x])if (mt[y]<0||ds[mt [y]l]==ds[x]+1&&dfs mt[y])){
mt [yl=x;mt2[x]=y;
return true;
}
ds[x]=1<<30;
return false;
}
int mm(){
int r=0;
memset (mt,-1,sizeof (mt)) ;memset (mt2,-1,sizeof (mt2));
while(bfs()){
forn(i,n)if (mt2[i]1<0)r+=dfs(i);
}

return r;

6.3 Hungarian

typedef double th;
const th INF=1e18;
struct Hungarian {
int n,m;
vector<vector<th> > a;
vector<th> u,v;vector<int> p,way;
Hungarian(int n, int m):
n(n) ,m(m) ,a(n+1,vector<th>(m+1,INF-1)) ,u(n+l),v(m+1) ,p(m+l) ,way (m+1) {3}
void set(int x, int y, th v){alx+1] [y+1]=v;}
th assign({
forr(i,1,n+1){
int jO=0;p[0]=1;
vector<th> minv(m+1,INF);
vector<char> used(m+1,false);
do {
used[jO]=true;

// to maximize: set INF to 1, use negative values
// important: n must be <=m

// p: assignment

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

10

11

12

13

14

15

16

17

18

19

20

21

22

23

int i0=p[j0],j1;th delta=INF;
forr(j,1,m+1)if (tused[j1){
th cur=a[i0] [j1-uli0]-v[j];
if (cur<minv[j]1)minv[jl=cur,way[j1=30;
if (minv[j]l<delta)delta=minv[j],jl=j;
}
forn(j,m+1)
if (used[j])ulpl(jl]l+=delta,v[j]l-=delta;
else minv[j]-=delta;
jo=j1;
} while(p[jOl);
do {
int jil=way[jOl;p[jOl=pl[j1];jO=j1;
} while(jO);
}
return -v[0];
}
3

// cost

6.4 Dinic

// Min cut: nodes with dist>=0 vs nodes with dist<0
// MVC (bipartite): left nodes with dist<0 + right nodes with dist>0
int nodes,src,dst; // remember to init nodes
int dist[MAXN],q[MAXN],work [MAXN] ;
// 11 M[MAXN]; (MIN CAP)
struct edge {int to,rev;1l f,cap;’};
vector<edge> g[MAXN];
void add_edge(int s, int t, 11 cap/*, 11 lcap = O (MIN CAP)*/){
// if(lcap) M[s] -= lcap, M[t] += lcap, cap -= lcap; (MIN CAP)
gls] .pb((edge) {t,sz(gl[t]),0,cap});
glt].pb((edge){s,sz(gls])-1,0,0});
}
bool dinic_bfs(){
fill(dist,dist+nodes,-1) ;dist[src]=0;
int qt=0;qlqt++]=src;
forn(gh,qt){
int u=q[qh];
forn(i,sz(glul)){
edge &e=g[u] [i];int v=gl[u] [i].to;
if (dist[v]<0&&e.f<e.cap)dist [v]=dist [u]l+1,q[qt++]=v;
}
}
return dist[dst]>=0;

Universidad Nacional de Rosario - :$

CONTENTS - 7.

OTHER

Page 24 of 25

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

}
11 dinic_dfs(int u, 11 £){
if (u==dst)return f;
for(int &i=work[u];i<sz(g[ul);i++){
edge &e=g[u] [i];
if (e.cap<=e.f)continue;
int v=e.to;
if (dist[v]==dist [u]+1){
11 df=dinic_dfs(v,min(f,e.cap-e.f));
if (df>0){e.f+=df;g[v] [e.rev] .f-=df ;return df;}
}
}
return O;
}
11 max_flow(int _src, int _dst){ // 0(m n"2)
src=_src;dst=_dst; // if unit weights, 0(m min(sqrt(m), n~{2/3}))
11 result=0; // if bipartite matching, 0(m sqrt(n))
while(dinic_bfs()){
fill(work, work+nodes, 0);
while(11l delta=dinic_dfs(src,INF))result+=delta;
}
return result;
}
//Checks if a strongly connected flow network has a feasible flow
distribution
bool feasible(int n){ // n = number of nodes in the network
src = n, dst = nt+l, nodes = nt+2;
forn(i, n){
if (M[i] > O)add_edge(src, i, M[il);
if (M[i] < 0)add_edge(i, dst, -M[il);

}
max_flow(src, dst);
for(edge e : glsrc]) if(e.f < e.cap) return false;

return true;

6.5 Min cost max flow

typedef 11 tf;const tf INFFLUJO=1el4;
typedef 11 tc;const tc INFCOSTO=1el4;
struct edge {

int u,v;tf cap,flow;tc cost;

tf rem(){return cap-flow;}
};

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

int nodes; // remember to init nodes
vector<int> g[MAXN];
vector<edge> e;
void add_edge(int u, int v, tf cap, tc cost) {
glu] .pb(e.size());e.pb((edge){u,v,cap,0,cost});
glv] .pb(e.size()) ;e.pb((edge){v,u,0,0,-cost});
}
tc dist[MAXN] ,mncost;
int pre[MAXN];
tf cap[MAXN] ,mxflow;
bool in_queue[MAXN];
void flow(int s, int t){
memset (in_queue, 0,sizeof (in_queue)) ;
mxflow=mncost=0;
while(1){
fill(dist,dist+nodes, INFCOSTO) ;dist[s]=0;
memset (pre,-1,sizeof (pre)) ;prel[s]=0;
memset (cap,0,sizeof (cap)) ;cap[s]=INFFLUJO;
queue<int> q;q.push(s);in_queue[s]=1;
while(q.size()){
int u=q.front();q.pop();in_queue[u]=0;
forn(_,glul .sizeO){
int i=glul [_];
edge &E=e[il;
if (E.rem()&&dist[E.v]>dist [u] +E.cost+1e-9){
dist[E.v]=dist[u]+E.cost;
prelE.v]=i;
cap[E.v]=min(cap[ul ,E.rem());
if('in_queue[E.v])q.push(E.v),in_queue[E.v]=1;
}
}
}
if (pre[t]<0)break;
mxflow+=cap[t] ;mncost+=cap[t]*dist[t];
for(int v=t;v!=s;v=elpre[v]].u){
e[prel[v]] .flow+=cap[t];elprel[v]~1].flow-=cap[t];
}
}
}

7 Other
7.1 Mo’s algorithm

Universidad Nacional de Rosario - :$

CONTENTS - 7. OTHER

10

11

12

13

15

16

17

18

19

20

21

22

23

10

11

12

14

15

16

17

int n,sq,nq; // array size, sqrt(array size), #queries
struct qu{int 1,r,id;}; // 0((nt+ng)*sqrt(n)*update)
qu qs [MAXN];
11 ans[MAXN]; // ans[i] = answer to ith query
bool qcomp(const qu &a, const qu &b){
if(a.1/sq!=b.1/sq) return a.l<b.l;
return (a.l/sq@)&l%7a.r<b.r:a.r>b.r;
}
void mos(){
forn(i,nqg)qgs[i].id=i;
sg=sqrt(n)+.5;
sort(gs,qs+nqg,qcomp) ;
int 1=0,r=0;
initQ);
forn(i,ng){
qu g=qs[il;
while(1>q.1)add(--1);
while(r<q.r)add(r++);
while(1<q.1l)remove (1++);
while(r>q.r)remove(--r);
ans[q.id]l=get_ans();

7.2 Divide and conquer DP optimization

// 0(knlogn). For 2D dps, when the position of optimal choice is non-
decreasing as the second variable increases
int k,n,f [MAXN],f2[MAXN];
void doit(int s, int e, int s0, int €0, int i){
// [s,e): range of calculation, [s0,e0): range of optimal choice
if (s==e)return;
int m=(s+e)/2,r=INF,rp;
forr(j,s0,min(e0,m)){
int rO=f[j]+something(j,m-1); // calculate cost of taking [j,m-1]
if (rO<r)r=r0,rp=j; // position of optimal choice
}
f2[ml=r;
doit(s,m,s0,rp+1,i) ;doit(m+1,e,rp,e0,1);
}
int doall(){
init_base_cases();
forr(i,1,k+1)doit(1,n+1,0,n,1i) ,memcpy(f,f2,sizeof (£));
return f[n];

18

10

11

10

11

12

13

14

15

16

1}
7.3 Dates

int dateToInt(int y, int m, int d){ // l-indexado (mes 2 = febrero)
return 1461%(y+4800+(m-14)/12)/4+367* (m-2-(m-14) /12%12) /12~
3x ((y+4900+(m-14)/12) /100) /4+d-32075;
}
void intToDate(int jd, int& y, int& m, int& d){
int x,n,i,j;x=jd+68569;
n=4%x/146097 ; x-=(146097*n+3) /4;
i=(4000%* (x+1)) /1461001 ;x-=1461%1/4-31;
j=80%x/2447 ;d=x-2447%j/80;
x=j/11;m=j+2-12%x;y=100% (n-49) +i+x;
}

7.4 CH+ stuff

const double DINF=numeric_limits<double>::infinity(); // double inf
// Custom comparator for set/map
struct comp {

bool operator() (const double& a, const double& b) const {

return a+EPS<b;}

3
set<double,comp> w; // or map<double,int,comp>
// Iterate over non empty subsets of bitmask
for(int s=m;s;s=(s-1)&m) // Decreasing order
for (int s=0;s=s-m&m;) // Increasing order
// Returns the number of trailing O-bits in x. x=0 is undefined.
int __builtin_ctz (unsigned int x)
// Returns the number of leading O-bits in x. x=0 is undefined.
int __builtin_clz (unsigned int x)
// Use corresponding versions for long long appending 11 at the end.
v=(x&(-x)) // Get the value of the least significant bit that is one.

7.5 Max number of divisors up to 10™

(10,2304) (11,4032) (12,6720) (13,10752) (14,17280) (15,26880)
(16,41472) (17,64512) (18,103680)

Page 25 of 25

(0,1) (1,4) (2,12) (3,32) (4,64) (5,128) (6,240) (7,448) (8,768) (9,1344)

	Data structures
	Segment tree
	Segment tree - Lazy propagation
	Segment tree - Persistence
	Segment tree - 2D
	Sparse table (static RMQ)
	Wavelet tree
	STL extended set
	Treap (as BST)
	Treap (implicit key)
	Convex hull trick (static)
	Convex hull trick (dynamic)
	Max Queue
	Union Find

	Graphs
	Bellman-Ford
	Floyd-Warshall
	Strongly connected components (+ 2-SAT)
	Articulation - Bridges - Biconnected
	Chu-Liu (minimum spanning arborescence)
	LCA - Binary Lifting
	Heavy-Light decomposition
	Centroid decomposition
	Eulerian path
	Dynamic connectivity
	Edmond's blossom (matching in general graphs)

	Math
	Identities
	Theorems
	Integer floor division
	Extended Euclid
	Pollard's rho
	Simpson's rule
	Polynomials
	Bairstow
	Fast Fourier Transform
	Fast Hadamard Transform
	Karatsuba
	Modular inverse
	Chinese remainder theorem (Euge)
	Mobius
	Linear Recurrence
	Gaussian Elimination
	Simplex

	Geometry
	Point
	Line
	Circle
	Polygon
	Plane
	Convex hull

	Strings
	KMP
	Z function
	Manacher
	Aho-Corasick
	Suffix automaton
	Suffix array
	LCP (Longest Common Prefix)
	Suffix Tree (Ukkonen's algorithm)
	Hashing

	Flow
	Matching (slower)
	Matching (Hopcroft-Karp)
	Hungarian
	Dinic
	Min cost max flow

	Other
	Mo's algorithm
	Divide and conquer DP optimization
	Dates
	C++ stuff
	Max number of divisors up to 10n

