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1 Data structures

1.1 Segment tree

1 #define oper min

2 #define NEUT INF

3 struct STree { // segment tree for min over integers

4 vector<int> st;int n;

5 STree(int n): st(4*n+5,NEUT), n(n) {}

6 void init(int k, int s, int e, int *a){

7 if(s+1==e){st[k]=a[s];return;}

8 int m=(s+e)/2;

9 init(2*k,s,m,a);init(2*k+1,m,e,a);

10 st[k]=oper(st[2*k],st[2*k+1]);

11 }

12 void upd(int k, int s, int e, int p, int v){

13 if(s+1==e){st[k]=v;return;}

14 int m=(s+e)/2;

15 if(p<m)upd(2*k,s,m,p,v);

16 else upd(2*k+1,m,e,p,v);

17 st[k]=oper(st[2*k],st[2*k+1]);

18 }

19 int query(int k, int s, int e, int a, int b){

20 if(s>=b||e<=a)return NEUT;

21 if(s>=a&&e<=b)return st[k];

22 int m=(s+e)/2;

23 return oper(query(2*k,s,m,a,b),query(2*k+1,m,e,a,b));

24 }

25 void init(int *a){init(1,0,n,a);}

26 void upd(int p, int v){upd(1,0,n,p,v);}

27 int query(int a, int b){return query(1,0,n,a,b);}

28 }; // usage: STree rmq(n);rmq.init(x);rmq.upd(i,v);rmq.query(s,e);

1.2 Segment tree - Lazy propagation

1 struct STree { // example: range sum with range addition

2 vector<int> st,lazy;int n;

3 STree(int n): st(4*n+5,0), lazy(4*n+5,0), n(n) {}

4 void init(int k, int s, int e, int *a){

5 lazy[k]=0; // lazy neutral element

6 if(s+1==e){st[k]=a[s];return;}

7 int m=(s+e)/2;

8 init(2*k,s,m,a);init(2*k+1,m,e,a);

9 st[k]=st[2*k]+st[2*k+1]; // operation

10 }

11 void push(int k, int s, int e){

12 if(!lazy[k])return; // if neutral, nothing to do

13 st[k]+=(e-s)*lazy[k]; // update st according to lazy

14 if(s+1<e){ // propagate to children

15 lazy[2*k]+=lazy[k];

16 lazy[2*k+1]+=lazy[k];

17 }

18 lazy[k]=0; // clear node lazy

19 }

20 void upd(int k, int s, int e, int a, int b, int v){

21 push(k,s,e);

22 if(s>=b||e<=a)return;

23 if(s>=a&&e<=b){

24 lazy[k]+=v; // accumulate lazy

25 push(k,s,e);return;

26 }

27 int m=(s+e)/2;

28 upd(2*k,s,m,a,b,v);upd(2*k+1,m,e,a,b,v);

29 st[k]=st[2*k]+st[2*k+1]; // operation

30 }

31 int query(int k, int s, int e, int a, int b){

32 if(s>=b||e<=a)return 0; // operation neutral

33 push(k,s,e);

34 if(s>=a&&e<=b)return st[k];

35 int m=(s+e)/2;

36 return query(2*k,s,m,a,b)+query(2*k+1,m,e,a,b); // operation

37 }

38 void init(int *a){init(1,0,n,a);}

39 void upd(int a, int b, int v){upd(1,0,n,a,b,v);}

40 int query(int a, int b){return query(1,0,n,a,b);}

41 }; // usage: STree rmq(n);rmq.init(x);rmq.upd(s,e,v);rmq.query(s,e);

1.3 Segment tree - Persistence

1 #define oper min

2 #define NEUT INF

3 struct STree { // persistent segment tree for min over integers

4 vector<int> st,l,r;int n,rt,sz;

5 STree(int n): st(24*n,NEUT),l(24*n,0),r(24*n,0),n(n),rt(0),sz(1){}

6 // be careful with memory! 4*n+q*log(n) . 24*n should be enough

7 int init(int s, int e, int *a){ // not necessary in most cases

8 int k=sz++;

9 if(s+1==e){st[k]=a[s];return k;}

10 int m=(s+e)/2;
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11 l[k]=init(s,m,a);r[k]=init(m,e,a);

12 st[k]=oper(st[l[k]],st[r[k]]);

13 return k;

14 }

15 int upd(int k, int s, int e, int p, int v){

16 int nk=sz++;l[nk]=l[k];r[nk]=r[k];

17 if(s+1==e){st[nk]=v;return nk;}

18 int m=(s+e)/2;

19 if(p<m)l[nk]=upd(l[k],s,m,p,v);

20 else r[nk]=upd(r[k],m,e,p,v);

21 st[nk]=oper(st[l[nk]],st[r[nk]]);

22 return nk;

23 }

24 int query(int k, int s, int e, int a, int b){

25 if(s>=b||e<=a)return NEUT;

26 if(s>=a&&e<=b)return st[k];

27 int m=(s+e)/2;

28 return oper(query(l[k],s,m,a,b),query(r[k],m,e,a,b));

29 }

30 int init(int *a){return init(0,n,a);}

31 int upd(int k, int p, int v){return rt=upd(k,0,n,p,v);}

32 int upd(int p, int v){return upd(rt,p,v);} // update on last root

33 int query(int k, int a, int b){return query(k,0,n,a,b);}

34 }; // usage: STree rmq(n);root=rmq.init(x);new_root=rmq.upd(root,i,v);rmq.

query(root,s,e);

1.4 Segment tree - 2D

1 int n,m;

2 int a[MAXN][MAXN],st[2*MAXN][2*MAXN];

3 void build(){

4 forn(i,n)forn(j,m)st[i+n][j+m]=a[i][j];

5 forn(i,n)for(int j=m-1;j;--j)

6 st[i+n][j]=op(st[i+n][j<<1],st[i+n][j<<1|1]);

7 for(int i=n-1;i;--i)forn(j,2*m)

8 st[i][j]=op(st[i<<1][j],st[i<<1|1][j]);

9 }

10 void upd(int x, int y, int v){

11 st[x+n][y+m]=v;

12 for(int j=y+m;j>1;j>>=1)st[x+n][j>>1]=op(st[x+n][j],st[x+n][j^1]);

13 for(int i=x+n;i>1;i>>=1)for(int j=y+m;j;j>>=1)

14 st[i>>1][j]=op(st[i][j],st[i^1][j]);

15 }

16 int query(int x0, int x1, int y0, int y1){

17 int r=NEUT;

18 for(int i0=x0+n,i1=x1+n;i0<i1;i0>>=1,i1>>=1){

19 int t[4],q=0;

20 if(i0&1)t[q++]=i0++;

21 if(i1&1)t[q++]=--i1;

22 forn(k,q)for(int j0=y0+m,j1=y1+m;j0<j1;j0>>=1,j1>>=1){

23 if(j0&1)r=op(r,st[t[k]][j0++]);

24 if(j1&1)r=op(r,st[t[k]][--j1]);

25 }

26 }

27 return r;

28 }

1.5 Sparse table (static RMQ)

1 #define oper min

2 int st[K][1<<K];int n; // K such that 2^K>n

3 void st_init(int *a){

4 forn(i,n)st[0][i]=a[i];

5 forr(k,1,K)forn(i,n-(1<<k)+1)

6 st[k][i]=oper(st[k-1][i],st[k-1][i+(1<<(k-1))]);

7 }

8 int st_query(int s, int e){

9 int k=31-__builtin_clz(e-s);

10 return oper(st[k][s],st[k][e-(1<<k)]);

11 }

1.6 Wavelet tree

1 struct WT {

2 vector<int> wt[1<<20];int n;

3 void init(int k, int s, int e){

4 if(s+1==e)return;

5 wt[k].clear();wt[k].pb(0);

6 int m=(s+e)/2;

7 init(2*k,s,m);init(2*k+1,m,e);

8 }

9 void add(int k, int s, int e, int v){

10 if(s+1==e)return;

11 int m=(s+e)/2;

12 if(v<m)wt[k].pb(wt[k].back()),add(2*k,s,m,v);

13 else wt[k].pb(wt[k].back()+1),add(2*k+1,m,e,v);

14 }

15 int query0(int k, int s, int e, int a, int b, int i){
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16 if(s+1==e)return s;

17 int m=(s+e)/2;

18 int q=(b-a)-(wt[k][b]-wt[k][a]);

19 if(i<q)return query0(2*k,s,m,a-wt[k][a],b-wt[k][b],i);

20 else return query0(2*k+1,m,e,wt[k][a],wt[k][b],i-q);

21 }

22 void upd(int k, int s, int e, int i){

23 if(s+1==e)return;

24 int m=(s+e)/2;

25 int v0=wt[k][i+1]-wt[k][i],v1=wt[k][i+2]-wt[k][i+1];

26 if(!v0&&!v1)upd(2*k,s,m,i-wt[k][i]);

27 else if(v0&&v1)upd(2*k+1,m,e,wt[k][i]);

28 else if(v0)wt[k][i+1]--;

29 else wt[k][i+1]++;

30 }

31 void init(int _n){n=_n;init(1,0,n);} // (values in range [0,n))

32 void add(int v){add(1,0,n,v);}

33 int query0(int a, int b, int i){ // ith element in range [a,b)

34 return query0(1,0,n,a,b,i); // (if it was sorted)

35 }

36 void upd(int i){ // swap positions i,i+1

37 upd(1,0,n,i);

38 }

39 };

1.7 STL extended set

1 #include<ext/pb_ds/assoc_container.hpp>

2 #include<ext/pb_ds/tree_policy.hpp>

3 using namespace __gnu_pbds;

4 typedef tree<int,null_type,less<int>,rb_tree_tag,

tree_order_statistics_node_update> ordered_set;

5 // find_by_order(i) -> iterator to ith element

6 // order_of_key(k) -> position (int) of lower_bound of k

1.8 Treap (as BST)

1 typedef struct item *pitem;

2 struct item {

3 int key,pr,cnt;

4 pitem l,r;

5 item(int key):key(key),pr(rand()),cnt(1),l(0),r(0) {}

6 };

7 int cnt(pitem t){return t?t->cnt:0;}

8 void upd_cnt(pitem t){if(t)t->cnt=cnt(t->l)+cnt(t->r)+1;}

9 void split(pitem t, int key, pitem& l, pitem& r){ // l: < key, r: >= key

10 if(!t)l=r=0;

11 else if(key<t->key)split(t->l,key,l,t->l),r=t;

12 else split(t->r,key,t->r,r),l=t;

13 upd_cnt(t);

14 }

15 void insert(pitem& t, pitem it){

16 if(!t)t=it;

17 else if(it->pr>t->pr)split(t,it->key,it->l,it->r),t=it;

18 else insert(it->key<t->key?t->l:t->r,it);

19 upd_cnt(t);

20 }

21 void merge(pitem& t, pitem l, pitem r){

22 if(!l||!r)t=l?l:r;

23 else if(l->pr>r->pr)merge(l->r,l->r,r),t=l;

24 else merge(r->l,l,r->l),t=r;

25 upd_cnt(t);

26 }

27 void erase(pitem& t, int key){

28 if(t->key==key)merge(t,t->l,t->r);

29 else erase(key<t->key?t->l:t->r,key);

30 upd_cnt(t);

31 }

32 pitem kth(pitem t, int k){

33 if(!t)return 0;

34 if(k==cnt(t->l))return t;

35 return k<cnt(t->l)?kth(t->l,k):kth(t->r,k-cnt(t->l)-1);

36 }

37 pair<int,int> lb(pitem t, int key){ // position and value of lower_bound

38 if(!t)return mp(0,1<<30); // (special value)

39 if(key>t->key){

40 auto w=lb(t->r,key);w.fst+=cnt(t->l)+1;return w;

41 }

42 auto w=lb(t->l,key);

43 if(w.fst==cnt(t->l))w.snd=t->key;

44 return w;

45 }

1.9 Treap (implicit key)

1 // example that supports range reverse and addition updates, and range sum

query

2 // (commented parts are specific to this problem)
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3 typedef struct item *pitem;

4 struct item {

5 int cnt,pr,val;

6 // int sum; // (paramters for range query)

7 // bool rev;int add; // (parameters for lazy prop)

8 pitem l,r;

9 item(int val): pr(rand()),cnt(1),val(val),l(0),r(0)/*,sum(val),rev(0),add

(0)*/ {}

10 };

11 void push(pitem it){

12 if(it){

13 /*if(it->rev){

14 swap(it->l,it->r);

15 if(it->l)it->l->rev^=true;

16 if(it->r)it->r->rev^=true;

17 it->rev=false;

18 }

19 it->val+=it->add;it->sum+=it->cnt*it->add;

20 if(it->l)it->l->add+=it->add;

21 if(it->r)it->r->add+=it->add;

22 it->add=0;*/

23 }

24 }

25 int cnt(pitem t){return t?t->cnt:0;}

26 // int sum(pitem t){return t?push(t),t->sum:0;}

27 void upd_cnt(pitem t){

28 if(t){

29 t->cnt=cnt(t->l)+cnt(t->r)+1;

30 // t->sum=t->val+sum(t->l)+sum(t->r);

31 }

32 }

33 void merge(pitem& t, pitem l, pitem r){

34 push(l);push(r);

35 if(!l||!r)t=l?l:r;

36 else if(l->pr>r->pr)merge(l->r,l->r,r),t=l;

37 else merge(r->l,l,r->l),t=r;

38 upd_cnt(t);

39 }

40 void split(pitem t, pitem& l, pitem& r, int sz){ // sz:desired size of l

41 if(!t){l=r=0;return;}

42 push(t);

43 if(sz<=cnt(t->l))split(t->l,l,t->l,sz),r=t;

44 else split(t->r,t->r,r,sz-1-cnt(t->l)),l=t;

45 upd_cnt(t);

46 }

47 void output(pitem t){ // useful for debugging

48 if(!t)return;

49 push(t);

50 output(t->l);printf(" %d",t->val);output(t->r);

51 }

52 // use merge and split for range updates and queries

1.10 Convex hull trick (static)

1 typedef ll tc;

2 struct Line{tc m,h;};

3 struct CHT { // for minimum (for maximum just change the sign of lines)

4 vector<Line> c;

5 int pos=0;

6 tc in(Line a, Line b){

7 tc x=b.h-a.h,y=a.m-b.m;

8 return x/y+(x%y?!((x>0)^(y>0)):0); // ==ceil(x/y)

9 }

10 void add(tc m, tc h){ // m’s should be non increasing

11 Line l=(Line){m,h};

12 if(c.size()&&m==c.back().m){

13 l.h=min(h,c.back().h);c.pop_back();if(pos)pos--;

14 }

15 while(c.size()>1&&in(c.back(),l)<=in(c[c.size()-2],c.back())){

16 c.pop_back();if(pos)pos--;

17 }

18 c.pb(l);

19 }

20 inline bool fbin(tc x, int m){return in(c[m],c[m+1])>x;}

21 tc eval(tc x){

22 // O(log n) query:

23 int s=0,e=c.size();

24 while(e-s>1){int m=(s+e)/2;

25 if(fbin(x,m-1))e=m;

26 else s=m;

27 }

28 return c[s].m*x+c[s].h;

29 // O(1) query (for ordered x’s):

30 while(pos>0&&fbin(x,pos-1))pos--;

31 while(pos<c.size()-1&&!fbin(x,pos))pos++;

32 return c[pos].m*x+c[pos].h;

33 }
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34 };

1.11 Convex hull trick (dynamic)

1 typedef ll tc;

2 const tc is_query=-(1LL<<62); // special value for query

3 struct Line {

4 tc m,b;

5 mutable multiset<Line>::iterator it,end;

6 const Line* succ(multiset<Line>::iterator it) const {

7 return (++it==end? NULL : &*it);}

8 bool operator<(const Line& rhs) const {

9 if(rhs.b!=is_query)return m<rhs.m;

10 const Line *s=succ(it);

11 if(!s)return 0;

12 return b-s->b<(s->m-m)*rhs.m;

13 }

14 };

15 struct HullDynamic : public multiset<Line> { // for maximum

16 bool bad(iterator y){

17 iterator z=next(y);

18 if(y==begin()){

19 if(z==end())return false;

20 return y->m==z->m&&y->b<=z->b;

21 }

22 iterator x=prev(y);

23 if(z==end())return y->m==x->m&&y->b<=x->b;

24 return (x->b-y->b)*(z->m-y->m)>=(y->b-z->b)*(y->m-x->m);

25 }

26 iterator next(iterator y){return ++y;}

27 iterator prev(iterator y){return --y;}

28 void add(tc m, tc b){

29 iterator y=insert((Line){m,b});

30 y->it=y;y->end=end();

31 if(bad(y)){erase(y);return;}

32 while(next(y)!=end()&&bad(next(y)))erase(next(y));

33 while(y!=begin()&&bad(prev(y)))erase(prev(y));

34 }

35 tc eval(tc x){

36 Line l=*lower_bound((Line){x,is_query});

37 return l.m*x+l.b;

38 }

39 };

1.12 Max Queue

1 struct MaxQueue { // for min, change < with >.

2 deque<int> d; queue<int> q;

3 void push(int v){while(sz(d)&&d.back()<v)d.pop_back();d.pb(v);q.push(v);}

4 void pop(){if(sz(d)&&d.front()==q.front())d.pop_front();q.pop();}

5 int getMax(){return sz(d)?d.front():NEUT;}

6 };

1.13 Union Find

1 int uf[MAXN];

2 void uf_init(){memset(uf,-1,sizeof(uf));}

3 int uf_find(int x){return uf[x]<0?x:uf[x]=uf_find(uf[x]);}

4 bool uf_join(int x, int y){

5 x=uf_find(x);y=uf_find(y);

6 if(x==y)return false;

7 if(uf[x]>uf[y])swap(x,y);

8 uf[x]+=uf[y];uf[y]=x;

9 return true;

10 }

2 Graphs

2.1 Bellman-Ford

1 int n;

2 vector<pair<int,int> > g[MAXN]; // u->[(v,cost)]

3 ll dist[MAXN];

4 void bford(int src){ // O(nm)

5 fill(dist,dist+n,INF);dist[src]=0;

6 forn(_,n-1)forn(x,n)if(dist[x]!=INF)for(auto t:g[x]){

7 dist[t.fst]=min(dist[t.fst],dist[x]+t.snd);

8 }

9 forn(x,n)if(dist[x]!=INF)for(auto t:g[x]){

10 if(dist[t.fst]>dist[x]+t.snd){

11 // neg cycle: all nodes reachable from t.fst have -INF distance

12 // to reconstruct neg cycle: save "prev" of each node, go up from t.

fst until repeating a node. this node and all nodes between the

two occurences form a neg cycle

13 }

14 }

15 }

2.2 Floyd-Warshall
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1 // g[i][j]: weight of edge (i, j) or INF if there’s no edge

2 // g[i][i]=0

3 ll g[MAXN][MAXN];int n;

4 void floyd(){ // O(n^3) . Replaces g with min distances

5 forn(k,n)forn(i,n)if(g[i][k]<INF)forn(j,n)if(g[k][j]<INF)

6 g[i][j]=min(g[i][j],g[i][k]+g[k][j]);

7 }

8 bool inNegCycle(int v){return g[v][v]<0;}

9 bool hasNegCycle(int a, int b){ // true iff there’s neg cycle in between

10 forn(i,n)if(g[a][i]<INF&&g[i][b]<INF&&g[i][i]<0)return true;

11 return false;

12 }

2.3 Strongly connected components (+ 2-SAT)

1 // MAXN: max number of nodes or 2 * max number of variables (2SAT)

2 bool truth[MAXN]; // truth[cmp[i]]=value of variable i (2SAT)

3 int nvar;int neg(int x){return MAXN-1-x;} // (2SAT)

4 vector<int> g[MAXN];

5 int n,lw[MAXN],idx[MAXN],qidx,cmp[MAXN],qcmp;

6 stack<int> st;

7 void tjn(int u){

8 lw[u]=idx[u]=++qidx;

9 st.push(u);cmp[u]=-2;

10 for(int v:g[u]){

11 if(!idx[v]||cmp[v]==-2){

12 if(!idx[v]) tjn(v);

13 lw[u]=min(lw[u],lw[v]);

14 }

15 }

16 if(lw[u]==idx[u]){

17 int x;

18 do{x=st.top();st.pop();cmp[x]=qcmp;}while(x!=u);

19 truth[qcmp]=(cmp[neg(u)]<0); // (2SAT)

20 qcmp++;

21 }

22 }

23 void scc(){

24 memset(idx,0,sizeof(idx));qidx=0;

25 memset(cmp,-1,sizeof(cmp));qcmp=0;

26 forn(i,n)if(!idx[i])tjn(i);

27 }

28 // Only for 2SAT:

29 void addor(int a, int b){g[neg(a)].pb(b);g[neg(b)].pb(a);}

30 bool satisf(int _nvar){

31 nvar=_nvar;n=MAXN;scc();

32 forn(i,nvar)if(cmp[i]==cmp[neg(i)])return false;

33 return true;

34 }

2.4 Articulation - Bridges - Biconnected

1 vector<int> g[MAXN];int n;

2 struct edge {int u,v,comp;bool bridge;};

3 vector<edge> e;

4 void add_edge(int u, int v){

5 g[u].pb(e.size());g[v].pb(e.size());

6 e.pb((edge){u,v,-1,false});

7 }

8 int D[MAXN],B[MAXN],T;

9 int nbc; // number of biconnected components

10 int art[MAXN]; // articulation point iff !=0

11 stack<int> st; // only for biconnected

12 void dfs(int u,int pe){

13 B[u]=D[u]=T++;

14 for(int ne:g[u])if(ne!=pe){

15 int v=e[ne].u^e[ne].v^u;

16 if(D[v]<0){

17 st.push(ne);dfs(v,ne);

18 if(B[v]>D[u])e[ne].bridge = true; // bridge

19 if(B[v]>=D[u]){

20 art[u]++; // articulation

21 int last; // start biconnected

22 do {

23 last=st.top();st.pop();

24 e[last].comp=nbc;

25 } while(last!=ne);

26 nbc++; // end biconnected

27 }

28 B[u]=min(B[u],B[v]);

29 }

30 else if(D[v]<D[u])st.push(ne),B[u]=min(B[u],D[v]);

31 }

32 }

33 void doit(){

34 memset(D,-1,sizeof(D));memset(art,0,sizeof(art));

35 nbc=T=0;

36 forn(i,n)if(D[i]<0)dfs(i,-1),art[i]--;
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37 }

2.5 Chu-Liu (minimum spanning arborescence)

1 typedef ll tw;const tw INF=1LL<<60;

2 struct edge {int src,dst;tw w;};

3 struct ChuLiu {

4 int n,r;tw cost;bool found;

5 vector<int> no,pr,mark;

6 vector<vector<int> > comp,nx;

7 vector<tw> mcost;

8 vector<vector<edge> > h;

9 ChuLiu(int n):n(n),h(n){}

10 void add_edge(int x, int y, tw w){h[y].pb((edge){x,y,w});}

11 void visit(int v, int s){

12 if(mark[v]){

13 vector<int> temp=no;found=true;

14 do {

15 cost+=mcost[v];v=pr[v];

16 if(v!=s)while(comp[v].size()>0){

17 no[comp[v].back()]=s;

18 comp[s].pb(comp[v].back());

19 comp[v].pop_back();

20 }

21 }while(v!=s);

22 for(int j:comp[s])if(j!=r)for(edge& e:h[j])

23 if(no[e.src]!=s)e.w-=mcost[temp[j]];

24 }

25 mark[v]=true;

26 for(int i:nx[v])if(no[i]!=no[v]&&pr[no[i]]==v)

27 if(!mark[no[i]]||i==s)

28 visit(i,s);

29 }

30 tw doit(int _r){ // r: root (O(nm))

31 r=_r;

32 no.resize(n);comp.clear();comp.resize(n);

33 forn(x,n)comp[x].pb(no[x]=x);

34 for(cost=0;;){

35 pr.clear();pr.resize(n,-1);

36 mcost=vector<tw>(n,INF);

37 forn(j,n)if(j!=r)for(edge e:h[j])

38 if(no[e.src]!=no[j]&&e.w<mcost[no[j]])

39 mcost[no[j]]=e.w,pr[no[j]]=no[e.src];

40 nx.clear();nx.resize(n);

41 forn(x,n)if(pr[x]>=0)nx[pr[x]].pb(x);

42 bool stop=true;

43 mark.clear();mark.resize(n);

44 forn(x,n)if(x!=r&&!mark[x]&&!comp[x].empty()){

45 found=false;visit(x,x);

46 if(found)stop=false;

47 }

48 if(stop){

49 forn(x,n)if(pr[x]>=0)cost+=mcost[x];

50 return cost;

51 }

52 }

53 }

54 };

2.6 LCA - Binary Lifting

1 vector<int> g[1<<K];int n; // K such that 2^K>=n

2 int F[K][1<<K],D[1<<K];

3 void lca_dfs(int x){

4 for(int y:g[x]){if(y==F[0][x])continue;

5 F[0][y]=x;D[y]=D[x]+1;lca_dfs(y);

6 }

7 }

8 void lca_init(){

9 D[0]=0;F[0][0]=-1;

10 lca_dfs(0);

11 forr(k,1,K)forn(x,n)

12 if(F[k-1][x]<0)F[k][x]=-1;

13 else F[k][x]=F[k-1][F[k-1][x]];

14 }

15 int lca(int x, int y){

16 if(D[x]<D[y])swap(x,y);

17 for(int k=K-1;k>=0;--k)if(D[x]-(1<<k)>=D[y])x=F[k][x];

18 if(x==y)return x;

19 for(int k=K-1;k>=0;--k)if(F[k][x]!=F[k][y])x=F[k][x],y=F[k][y];

20 return F[0][x];

21 }

2.7 Heavy-Light decomposition

1 vector<int> g[MAXN];

2 int wg[MAXN],dad[MAXN],dep[MAXN]; // weight,father,depth

3 void dfs1(int x){



Universidad Nacional de Rosario - :$ CONTENTS - 2. GRAPHS Page 9 of 25

4 wg[x]=1;

5 for(int y:g[x])if(y!=dad[x]){

6 dad[y]=x;dep[y]=dep[x]+1;dfs1(y);

7 wg[x]+=wg[y];

8 }

9 }

10 int curpos,pos[MAXN],head[MAXN];

11 void hld(int x, int c){

12 if(c<0)c=x;

13 pos[x]=curpos++;head[x]=c;

14 int mx=-1;

15 for(int y:g[x])if(y!=dad[x]&&(mx<0||wg[mx]<wg[y]))mx=y;

16 if(mx>=0)hld(mx,c);

17 for(int y:g[x])if(y!=mx&&y!=dad[x])hld(y,-1);

18 }

19 void hld_init(){dad[0]=-1;dep[0]=0;dfs1(0);curpos=0;hld(0,-1);}

20 int query(int x, int y, STree& rmq){

21 int r=NEUT;

22 while(head[x]!=head[y]){

23 if(dep[head[x]]>dep[head[y]])swap(x,y);

24 r=oper(r,rmq.query(pos[head[y]],pos[y]+1));

25 y=dad[head[y]];

26 }

27 if(dep[x]>dep[y])swap(x,y); // now x is lca

28 r=oper(r,rmq.query(pos[x],pos[y]+1));

29 return r;

30 }

31 // for updating: rmq.upd(pos[x],v);

2.8 Centroid decomposition

1 vector<int> g[MAXN];int n;

2 bool tk[MAXN];

3 int fat[MAXN]; // father in centroid decomposition

4 int szt[MAXN]; // size of subtree

5 int calcsz(int x, int f){

6 szt[x]=1;

7 for(auto y:g[x])if(y!=f&&!tk[y])szt[x]+=calcsz(y,x);

8 return szt[x];

9 }

10 void cdfs(int x=0, int f=-1, int sz=-1){ // O(nlogn)

11 if(sz<0)sz=calcsz(x,-1);

12 for(auto y:g[x])if(!tk[y]&&szt[y]*2>=sz){

13 szt[x]=0;cdfs(y,f,sz);return;

14 }

15 tk[x]=true;fat[x]=f;

16 for(auto y:g[x])if(!tk[y])cdfs(y,x);

17 }

18 void centroid(){memset(tk,false,sizeof(tk));cdfs();}

2.9 Eulerian path

1 // Directed version (uncomment commented code for undirected)

2 struct edge {

3 int y;

4 // list<edge>::iterator rev;

5 edge(int y):y(y){}

6 };

7 list<edge> g[MAXN];

8 void add_edge(int a, int b){

9 g[a].push_front(edge(b));//auto ia=g[a].begin();

10 // g[b].push_front(edge(a));auto ib=g[b].begin();

11 // ia->rev=ib;ib->rev=ia;

12 }

13 vector<int> p;

14 void go(int x){

15 while(g[x].size()){

16 int y=g[x].front().y;

17 //g[y].erase(g[x].front().rev);

18 g[x].pop_front();

19 go(y);

20 }

21 p.push_back(x);

22 }

23 vector<int> get_path(int x){ // get a path that begins in x

24 // check that a path exists from x before calling to get_path!

25 p.clear();go(x);reverse(p.begin(),p.end());

26 return p;

27 }

2.10 Dynamic connectivity

1 struct UnionFind {

2 int n,comp;

3 vector<int> uf,si,c;

4 UnionFind(int n=0):n(n),comp(n),uf(n),si(n,1){

5 forn(i,n)uf[i]=i;}

6 int find(int x){return x==uf[x]?x:find(uf[x]);}
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7 bool join(int x, int y){

8 if((x=find(x))==(y=find(y)))return false;

9 if(si[x]<si[y])swap(x,y);

10 si[x]+=si[y];uf[y]=x;comp--;c.pb(y);

11 return true;

12 }

13 int snap(){return c.size();}

14 void rollback(int snap){

15 while(c.size()>snap){

16 int x=c.back();c.pop_back();

17 si[uf[x]]-=si[x];uf[x]=x;comp++;

18 }

19 }

20 };

21 enum {ADD,DEL,QUERY};

22 struct Query {int type,x,y;};

23 struct DynCon {

24 vector<Query> q;

25 UnionFind dsu;

26 vector<int> mt;

27 map<pair<int,int>,int> last;

28 DynCon(int n):dsu(n){}

29 void add(int x, int y){

30 if(x>y)swap(x,y);

31 q.pb((Query){ADD,x,y});mt.pb(-1);last[mp(x,y)]=q.size()-1;

32 }

33 void remove(int x, int y){ // the edge to remove must exist

34 if(x>y)swap(x,y);

35 q.pb((Query){DEL,x,y});

36 int pr=last[mp(x,y)];mt[pr]=q.size()-1;mt.pb(pr);

37 }

38 void query(){q.pb((Query){QUERY,-1,-1});mt.pb(-1);}

39 void process(){ // answers all queries in order

40 if(!q.size())return;

41 forn(i,q.size())if(q[i].type==ADD&&mt[i]<0)mt[i]=q.size();

42 go(0,q.size());

43 }

44 void go(int s, int e){

45 if(s+1==e){

46 if(q[s].type==QUERY) // answer query using DSU

47 printf("%d\n",dsu.comp);

48 return;

49 }

50 int k=dsu.snap(),m=(s+e)/2;

51 for(int i=e-1;i>=m;--i)if(mt[i]>=0&&mt[i]<s)dsu.join(q[i].x,q[i].y);

52 go(s,m);dsu.rollback(k);

53 for(int i=m-1;i>=s;--i)if(mt[i]>=e)dsu.join(q[i].x,q[i].y);

54 go(m,e);dsu.rollback(k);

55 }

56 };

2.11 Edmond’s blossom (matching in general graphs)

1 vector<int> g[MAXN];

2 int n,m,mt[MAXN],qh,qt,q[MAXN],ft[MAXN],bs[MAXN];

3 bool inq[MAXN],inb[MAXN],inp[MAXN];

4 int lca(int root, int x, int y){

5 memset(inp,0,sizeof(inp));

6 while(1){

7 inp[x=bs[x]]=true;

8 if(x==root)break;

9 x=ft[mt[x]];

10 }

11 while(1){

12 if(inp[y=bs[y]])return y;

13 else y=ft[mt[y]];

14 }

15 }

16 void mark(int z, int x){

17 while(bs[x]!=z){

18 int y=mt[x];

19 inb[bs[x]]=inb[bs[y]]=true;

20 x=ft[y];

21 if(bs[x]!=z)ft[x]=y;

22 }

23 }

24 void contr(int s, int x, int y){

25 int z=lca(s,x,y);

26 memset(inb,0,sizeof(inb));

27 mark(z,x);mark(z,y);

28 if(bs[x]!=z)ft[x]=y;

29 if(bs[y]!=z)ft[y]=x;

30 forn(x,n)if(inb[bs[x]]){

31 bs[x]=z;

32 if(!inq[x])inq[q[++qt]=x]=true;

33 }

34 }
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35 int findp(int s){

36 memset(inq,0,sizeof(inq));

37 memset(ft,-1,sizeof(ft));

38 forn(i,n)bs[i]=i;

39 inq[q[qh=qt=0]=s]=true;

40 while(qh<=qt){

41 int x=q[qh++];

42 for(int y:g[x])if(bs[x]!=bs[y]&&mt[x]!=y){

43 if(y==s||mt[y]>=0&&ft[mt[y]]>=0)contr(s,x,y);

44 else if(ft[y]<0){

45 ft[y]=x;

46 if(mt[y]<0)return y;

47 else if(!inq[mt[y]])inq[q[++qt]=mt[y]]=true;

48 }

49 }

50 }

51 return -1;

52 }

53 int aug(int s, int t){

54 int x=t,y,z;

55 while(x>=0){

56 y=ft[x];

57 z=mt[y];

58 mt[y]=x;mt[x]=y;

59 x=z;

60 }

61 return t>=0;

62 }

63 int edmonds(){ // O(n^2 m)

64 int r=0;

65 memset(mt,-1,sizeof(mt));

66 forn(x,n)if(mt[x]<0)r+=aug(x,findp(x));

67 return r;

68 }

3 Math

3.1 Identities

Cn = 2(2n−1)
n+1 Cn−1

Cn = 1
n+1

(
2n
n

)
Cn ∼ 4n

n3/2
√
π

σ(n) = O(log(log(n))) (number of divisors of n)
F2n+1 = F 2

n + F 2
n+1

F2n = F 2
n+1 − F 2

n−1∑n
i=1 Fi = Fn+2 − 1

Fn+iFn+j − FnFn+i+j = (−1)nFiFj
(Möbius Inv. Formula) Let g(n) =

∑
d|n f(d), then f(n) =

∑
d | ng(d)µ

(
n
d )
)
.

3.2 Theorems

1 (Tutte) A graph, G = (V, E), has a perfect matching if and only if for

every subset U of V, the subgraph induced by V - U has at most |U|

connected components with an odd number of vertices.

2 Petersens Theorem. Every cubic, bridgeless graph contains a perfect

matching.

3 (Dilworth) In any finite partially ordered set, the maximum number of

elements in any antichain equals the minimum number of chains in any

partition of the set into chains

4 Pick: A=I+B/2-1 (area of polygon, points inside, points on border)

3.3 Integer floor division

1 void floordiv(ll x, ll y, ll& q, ll& r) { // (for negative x)

2 q=x/y;r=x%y;

3 if((r!=0)&&((r<0)!=(y<0)))q--,r+=y;

4 }

3.4 Extended Euclid

1 ll euclid(ll a, ll b, ll& x, ll& y){ // a*(x+k*(b/d))+b*(y-k*(a/d))=d

2 if(!b){x=1;y=0;return a;} // (for any k)

3 ll d=euclid(b,a%b,x,y);

4 ll t=y;y=x-(a/b)*y;x=t;

5 return d;

6 }

3.5 Pollard’s rho

1 ll gcd(ll a, ll b){return a?gcd(b%a,a):b;}

2 ull mulmod(ull a, ull b, ull m){ // 0 <= a, b < m

3 long double x; ull c; ll r;

4 x = a; c = x * b / m;

5 r = (ll)(a * b - c * m) % (ll)m;

6 return r < 0 ? r + m : r;

7 }

8 ll expmod(ll b, ll e, ll m){

9 if(!e)return 1;

10 ll q=expmod(b,e/2,m);q=mulmod(q,q,m);

11 return e&1?mulmod(b,q,m):q;
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12 }

13 bool is_prime_prob(ll n, int a){

14 if(n==a)return true;

15 ll s=0,d=n-1;

16 while(d%2==0)s++,d/=2;

17 ll x=expmod(a,d,n);

18 if((x==1)||(x+1==n))return true;

19 forn(_,s-1){

20 x=mulmod(x,x,n);

21 if(x==1)return false;

22 if(x+1==n)return true;

23 }

24 return false;

25 }

26 bool rabin(ll n){ // true iff n is prime

27 if(n==1)return false;

28 int ar[]={2,3,5,7,11,13,17,19,23};

29 forn(i,9)if(!is_prime_prob(n,ar[i]))return false;

30 return true;

31 }

32 ll rho(ll n){

33 if(!(n&1))return 2;

34 ll x=2,y=2,d=1;

35 ll c=rand()%n+1;

36 while(d==1){

37 x=(mulmod(x,x,n)+c)%n;

38 y=(mulmod(y,y,n)+c)%n;

39 y=(mulmod(y,y,n)+c)%n;

40 if(x>=y)d=gcd(x-y,n);

41 else d=gcd(y-x,n);

42 }

43 return d==n?rho(n):d;

44 }

45 void fact(ll n, map<ll,int>& f){ //O (lg n)^3

46 if(n==1)return;

47 if(rabin(n)){f[n]++;return;}

48 ll q=rho(n);fact(q,f);fact(n/q,f);

49 }

3.6 Simpson’s rule

1 double integrate(double f(double), double a, double b, int n=10000){

2 double r=0,h=(b-a)/n,fa=f(a),fb;

3 forn(i,n){

4 fb=f(a+h*(i+1));

5 r+=fa+4*f(a+h*(i+0.5))+fb;fa=fb;

6 }

7 return r*h/6.;

8 }

3.7 Polynomials

1 typedef int tp; // type of polynomial

2 template<class T=tp>

3 struct poly { // poly<> : 1 variable, poly<poly<>>: 2 variables, etc.

4 vector<T> c;

5 T& operator[](int k){return c[k];}

6 poly(vector<T>& c):c(c){}

7 poly(initializer_list<T> c):c(c){}

8 poly(int k):c(k){}

9 poly(){}

10 poly operator+(poly<T> o){

11 int m=c.size(),n=o.c.size();

12 poly res(max(m,n));

13 forn(i,m)res[i]=res[i]+c[i];

14 forn(i,n)res[i]=res[i]+o.c[i];

15 return res;

16 }

17 poly operator*(tp k){

18 poly res(c.size());

19 forn(i,c.size())res[i]=c[i]*k;

20 return res;

21 }

22 poly operator*(poly o){

23 int m=c.size(),n=o.c.size();

24 poly res(m+n-1);

25 forn(i,m)forn(j,n)res[i+j]=res[i+j]+c[i]*o.c[j];

26 return res;

27 }

28 poly operator-(poly<T> o){return *this+(o*-1);}

29 T operator()(tp v){

30 T sum(0);

31 for(int i=c.size()-1;i>=0;--i)sum=sum*v+c[i];

32 return sum;

33 }

34 };

35 // example: p(x,y)=2*x^2+3*x*y-y+4

36 // poly<poly<>> p={{4,-1},{0,3},{2}}
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37 // printf("%d\n",p(2)(3)) // 27 (p(2,3))

38 set<tp> roots(poly<> p){ // only for integer polynomials

39 set<tp> r;

40 while(!p.c.empty()&&!p.c.back())p.c.pop_back();

41 if(!p(0))r.insert(0);

42 if(p.c.empty())return r;

43 tp a0=0,an=abs(p[p.c.size()-1]);

44 for(int k=0;!a0;a0=abs(p[k++]));

45 vector<tp> ps,qs;

46 forr(i,1,sqrt(a0)+1)if(a0%i==0)ps.pb(i),ps.pb(a0/i);

47 forr(i,1,sqrt(an)+1)if(an%i==0)qs.pb(i),qs.pb(an/i);

48 for(auto pt:ps)for(auto qt:qs)if(pt%qt==0){

49 tp x=pt/qt;

50 if(!p(x))r.insert(x);

51 if(!p(-x))r.insert(-x);

52 }

53 return r;

54 }

55 pair<poly<>,tp> ruffini(poly<> p, tp r){ // returns pair (result,rem)

56 int n=p.c.size()-1;

57 vector<tp> b(n);

58 b[n-1]=p[n];

59 for(int k=n-2;k>=0;--k)b[k]=p[k+1]+r*b[k+1];

60 return mp(poly<>(b),p[0]+r*b[0]);

61 }

62 // only for double polynomials

63 pair<poly<>,poly<> > polydiv(poly<> p, poly<> q){ // returns pair (result,

rem)

64 int n=p.c.size()-q.c.size()+1;

65 vector<tp> b(n);

66 for(int k=n-1;k>=0;--k){

67 b[k]=p.c.back()/q.c.back();

68 forn(i,q.c.size())p[i+k]-=b[k]*q[i];

69 p.c.pop_back();

70 }

71 while(!p.c.empty()&&abs(p.c.back())<EPS)p.c.pop_back();

72 return mp(poly<>(b),p);

73 }

74 // only for double polynomials

75 poly<> interpolate(vector<tp> x, vector<tp> y){ //TODO TEST

76 poly<> q={1},S={0};

77 for(tp a:x)q=poly<>({-a,1})*q;

78 forn(i,x.size()){

79 poly<> Li=ruffini(q,x[i]).fst;

80 Li=Li*(1.0/Li(x[i])); // change for int polynomials

81 S=S+Li*y[i];

82 }

83 return S;

84 }

3.8 Bairstow

1 double pget(poly<>& p, int k){return k<p.c.size()?p[k]:0;}

2 poly<> bairstow(poly<> p){ // returns polynomial of degree 2 that

3 int n=p.c.size()-1; // divides p

4 assert(n>=3&&abs(p.c.back())>EPS);

5 double u=p[n-1]/p[n],v=p[n-2]/p[n];

6 forn(_,ITER){

7 auto w=polydiv(p,{v,u,1});

8 poly<> q=w.fst,r0=w.snd;

9 poly<> r1=polydiv(q,{v,u,1}).snd;

10 double c=pget(r0,1),d=pget(r0,0),g=pget(r1,1),h=pget(r1,0);

11 double det=1/(v*g*g+h*(h-u*g)),uu=u;

12 u-=det*(-h*c+g*d);v-=det*(-g*v*c+(g*uu-h)*d);

13

14 }

15 return {v,u,1};

16 }

17 void addr(vector<double>& r, poly<>& p){

18 assert(p.c.size()<=3);

19 if(p.c.size()<=1)return;

20 if(p.c.size()==2)r.pb(-p[0]/p[1]);

21 if(p.c.size()==3){

22 double a=p[2],b=p[1],c=p[0];

23 double d=b*b-4*a*c;

24 if(d<-0.1)return; // huge epsilon because of bad precision

25 d=d>0?sqrt(d):0;r.pb((-b-d)/2/a);r.pb((-b+d)/2/a);

26 }

27 }

28 vector<double> roots(poly<> p){

29 while(!p.c.empty()&&abs(p.c.back())<EPS)p.c.pop_back();

30 forn(i,p.c.size())p[i]/=p.c.back();

31 vector<double> r;int n;

32 while((n=p.c.size()-1)>=3){

33 poly<> q=bairstow(p);addr(r,q);

34 p=polydiv(p,q).fst;

35 while(p.c.size()>n-1)p.c.pop_back();
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36 }

37 addr(r,p);

38 return r;

39 }

3.9 Fast Fourier Transform

1 struct CD { // or typedef complex<double> CD; (but 4x slower)

2 double r,i;

3 CD(double r=0, double i=0):r(r),i(i){}

4 void operator/=(const int c){r/=c, i/=c;}

5 };

6 CD operator*(const CD& a, const CD& b){

7 return CD(a.r*b.r-a.i*b.i,a.r*b.i+a.i*b.r);}

8 CD operator+(const CD& a, const CD& b){return CD(a.r+b.r,a.i+b.i);}

9 CD operator-(const CD& a, const CD& b){return CD(a.r-b.r,a.i-b.i);}

10 const double pi=acos(-1.0);

11 CD cp1[MAXN+9],cp2[MAXN+9],w[MAXN+9]; // MAXN must be power of 2 !!

12 int R[MAXN+9];

13 void dft(CD* a, int n, bool inv){

14 forn(i,n)if(R[i]<i)swap(a[R[i]],a[i]);

15 for(int m=2;m<=n;m*=2){

16 double z=2*pi/m*(inv?-1:1);

17 CD wi=CD(cos(z),sin(z));

18 for(int j=0;j<n;j+=m){

19 w[0]=1;

20 for(int k=j,k2=j+m/2,t=1;k2<j+m;k++,k2++,t++){

21 CD u=a[k];CD v=a[k2]*w[t-1];a[k]=u+v;a[k2]=u-v;

22 w[t]=t%2?wi*w[t-1]:w[t/2]*w[t/2];

23 }

24 }

25 }

26 if(inv)forn(i,n)a[i]/=n;

27 }

28 vector<int> multiply(vector<int>& p1, vector<int>& p2){

29 int n=p1.size()+p2.size()+1;

30 int m=1,cnt=0;

31 while(m<=n)m+=m,cnt++;

32 forn(i,m){R[i]=0;forn(j,cnt)R[i]=(R[i]<<1)|((i>>j)&1);}

33 forn(i,m)cp1[i]=0,cp2[i]=0;

34 forn(i,p1.size())cp1[i]=p1[i];

35 forn(i,p2.size())cp2[i]=p2[i];

36 dft(cp1,m,false);dft(cp2,m,false);

37 forn(i,m)cp1[i]=cp1[i]*cp2[i];

38 dft(cp1,m,true);

39 vector<int> res;

40 n-=2;

41 forn(i,n)res.pb((ll)floor(cp1[i].r+0.5));

42 return res;

43 }

3.10 Fast Hadamard Transform

1 ll c1[MAXN+9],c2[MAXN+9]; // MAXN must be power of 2 !!

2 void fht(ll* p, int n, bool inv){

3 for(int l=1;2*l<=n;l*=2){

4 for(int i=0;i<n;i+=2*l){

5 forn(j,l){

6 ll u=p[i+j],v=p[i+l+j];

7 // XOR

8 if(!inv)p[i+j]=u+v,p[i+l+j]=u-v;

9 else p[i+j]=(u+v)/2,p[i+l+j]=(u-v)/2;

10 // AND

11 //if(!inv)p[i+j]=v,p[i+l+j]=u+v;

12 //else p[i+j]=-u+v,p[i+l+j]=u;

13 // OR

14 //if(!inv)p[i+j]=u+v,p[i+l+j]=u;

15 //else p[i+j]=v,p[i+l+j]=u-v;

16 }

17 }

18 }

19 }

20 // like polynomial multiplication, but XORing exponents

21 // instead of adding them (also ANDing, ORing)

22 vector<ll> multiply(vector<ll>& p1, vector<ll>& p2){

23 int n=1<<(32-__builtin_clz(max(sz(p1),sz(p2))-1));

24 forn(i,n)c1[i]=0,c2[i]=0;

25 forn(i,sz(p1))c1[i]=p1[i];

26 forn(i,sz(p2))c2[i]=p2[i];

27 fht(c1,n,false);fht(c2,n,false);

28 forn(i,n)c1[i]*=c2[i];

29 fht(c1,n,true);

30 return vector<ll>(c1,c1+n);

31 }

3.11 Karatsuba

1 typedef ll tp;
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2 #define add(n,s,d,k) forn(i,n)(d)[i]+=(s)[i]*k

3 tp* ini(int n){tp *r=new tp[n];fill(r,r+n,0);return r;}

4 void karatsura(int n, tp* p, tp* q, tp* r){

5 if(n<=0)return;

6 if(n<35)forn(i,n)forn(j,n)r[i+j]+=p[i]*q[j];

7 else {

8 int nac=n/2,nbd=n-n/2;

9 tp *a=p,*b=p+nac,*c=q,*d=q+nac;

10 tp *ab=ini(nbd+1),*cd=ini(nbd+1),*ac=ini(nac*2),*bd=ini(nbd*2);

11 add(nac,a,ab,1);add(nbd,b,ab,1);

12 add(nac,c,cd,1);add(nbd,d,cd,1);

13 karatsura(nac,a,c,ac);karatsura(nbd,b,d,bd);

14 add(nac*2,ac,r+nac,-1);

15 add(nbd*2,bd,r+nac,-1);

16 add(nac*2,ac,r,1);

17 add(nbd*2,bd,r+nac*2,1);

18 karatsura(nbd+1,ab,cd,r+nac);

19 free(ab);free(cd);free(ac);free(bd);

20 }

21 }

22 vector<tp> multiply(vector<tp> p0, vector<tp> p1){

23 int n=max(p0.size(),p1.size());

24 tp *p=ini(n),*q=ini(n),*r=ini(2*n);

25 forn(i,p0.size())p[i]=p0[i];

26 forn(i,p1.size())q[i]=p1[i];

27 karatsura(n,p,q,r);

28 vector<tp> rr(r,r+p0.size()+p1.size()-1);

29 free(p);free(q);free(r);

30 return rr;

31 }

3.12 Modular inverse

1 inv[1]=1; //O(MAXN), i*inv[i] = 1 mod p, MAXN <= p

2 forr(i, 2, MAXN) inv[i]=p-((ll)(p/i)*inv[p%i])%p;

3.13 Chinese remainder theorem (Euge)

1 #define mod(a, m) (((a)%m + m)%m)

2 struct Meq { // requires euclid, inv, mulmod (from pollard rho)

3 ll a, b, m; // a*x = b (mod m)

4 Meq(ll a = 0, ll b = 0, ll m = 0): a(a), b(b), m(m){}

5 bool norm(){ // returns false if equation is not consistent

6 a = mod(a, m); b = mod(b, m);

7 ll g = __gcd(a, m); if(b%g) return false;

8 a/=g; b/=g; m/=g; b = b*inv(a, m)%m; a = 1;

9 return true;

10 }

11 };

12 Meq Euge(Meq S, Meq T){ // Requires S, T to be normalized first

13 ll x, y, g = euclid(S.m, -T.m, x, y);

14 if(g < 0) x *= -1, y *= -1, g *= -1;

15 if((S.b - T.b)%g) return Meq(); // returns m = 0 if not consistent

16 ll M = S.m * (T.m/g), r = (T.b - S.b)/g;

17 x = mulmod(x, r, M);

18 ll A = mod(mulmod(S.m, x, M) + S.b, M);

19 return Meq(1, A, M);

20 }

3.14 Mobius

1 short mu[MAXN] = {0,1};

2 void mobius(){

3 forr(i,1,MAXN)if(mu[i])for(int j=i+i;j<MAXN;j+=i)mu[j]-=mu[i];

4 }

3.15 Linear Recurrence

1 struct LRec{

2 int n; vector<int> In, T; vector<vector<int>> B;

3 vector<int> add(vector<int> &a, vector<int> &b){

4 vector<int> ans(2*n+1, 0);

5 forn(i, n+1)forn(j, n+1)

6 ans[i+j] = (ans[i+j] + (ll)a[i]*b[j]%MOD + MOD)%MOD;

7 for(int i = 2*n; i > n; i--)forn(j, n)

8 ans[i-1-j] = (ans[i-1-j] + (ll)ans[i]*T[j]%MOD + MOD)%MOD;

9 ans.resize(n+1); return ans; }

10 LRec(vector<int> V, vector<int> T): In(V), T(T){

11 n = sz(V);

12 vector<int> a(n+1, 0);

13 a[1] = 1; B.pb(a);

14 forr(i, 1, LOG) B.pb(add(B[i-1], B[i-1])); }

15 int calc(ll k){

16 vector<int> a(n+1, 0); a[0] = 1;

17 forn(i, LOG)if(k>>i&1)a = add(a, B[i]);

18 int ret = 0;

19 forn(i, n)ret = (ret + (ll)a[i+1]*In[i]%MOD + MOD)%MOD;

20 return ret; }

21 };
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3.16 Gaussian Elimination

1 double reduce(vector<vector<double> >& x){ // returns determinant

2 int n=x.size(),m=x[0].size();

3 int i=0,j=0;double r=1.;

4 while(i<n&&j<m){

5 int l=i;

6 forr(k,i+1,n)if(abs(x[k][j])>abs(x[l][j]))l=k;

7 if(abs(x[l][j])<EPS){j++;r=0.;continue;}

8 if(l!=i){r=-r;swap(x[i],x[l]);}

9 r*=x[i][j];

10 for(int k=m-1;k>=j;k--)x[i][k]/=x[i][j];

11 forn(k,n){

12 if(k==i)continue;

13 for(int l=m-1;l>=j;l--)x[k][l]-=x[k][j]*x[i][l];

14 }

15 i++;j++;

16 }

17 return r;

18 }

3.17 Simplex

1 vector<int> X,Y;

2 vector<vector<double> > A;

3 vector<double> b,c;

4 double z;

5 int n,m;

6 void pivot(int x,int y){

7 swap(X[y],Y[x]);

8 b[x]/=A[x][y];

9 forn(i,m)if(i!=y)A[x][i]/=A[x][y];

10 A[x][y]=1/A[x][y];

11 forn(i,n)if(i!=x&&abs(A[i][y])>EPS){

12 b[i]-=A[i][y]*b[x];

13 forn(j,m)if(j!=y)A[i][j]-=A[i][y]*A[x][j];

14 A[i][y]=-A[i][y]*A[x][y];

15 }

16 z+=c[y]*b[x];

17 forn(i,m)if(i!=y)c[i]-=c[y]*A[x][i];

18 c[y]=-c[y]*A[x][y];

19 }

20 pair<double,vector<double> > simplex( // maximize c^T x s.t. Ax<=b, x>=0

21 vector<vector<double> > _A, vector<double> _b, vector<double> _c){

22 // returns pair (maximum value, solution vector)

23 A=_A;b=_b;c=_c;

24 n=b.size();m=c.size();z=0.;

25 X=vector<int>(m);Y=vector<int>(n);

26 forn(i,m)X[i]=i;

27 forn(i,n)Y[i]=i+m;

28 while(1){

29 int x=-1,y=-1;

30 double mn=-EPS;

31 forn(i,n)if(b[i]<mn)mn=b[i],x=i;

32 if(x<0)break;

33 forn(i,m)if(A[x][i]<-EPS){y=i;break;}

34 assert(y>=0); // no solution to Ax<=b

35 pivot(x,y);

36 }

37 while(1){

38 double mx=EPS;

39 int x=-1,y=-1;

40 forn(i,m)if(c[i]>mx)mx=c[i],y=i;

41 if(y<0)break;

42 double mn=1e200;

43 forn(i,n)if(A[i][y]>EPS&&b[i]/A[i][y]<mn)mn=b[i]/A[i][y],x=i;

44 assert(x>=0); // c^T x is unbounded

45 pivot(x,y);

46 }

47 vector<double> r(m);

48 forn(i,n)if(Y[i]<m)r[Y[i]]=b[i];

49 return mp(z,r);

50 }

4 Geometry

4.1 Point

1 bool left(pt p, pt q){ // is it to the left of directed line pq?

2 return (q-p)%(*this-p)>EPS;}

3 pt rot(pt r){return pt(*this%r,*this*r);}

4 pt rot(double a){return rot(pt(sin(a),cos(a)));}

5 pt ccw90(1,0); pt cw90(-1,0);

4.2 Line

1 int sgn2(double x){return x<0?-1:1;}

2 struct ln {

3 pt p,pq;
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4 ln(pt p, pt q):p(p),pq(q-p){}

5 ln(){}

6 bool has(pt r){return dist(r)<EPS;}

7 bool seghas(pt r){return has(r)&&(r-p)*(r-(p+pq))-EPS<0;}

8 // bool operator /(ln l){return (pq.unit()^l.pq.unit()).norm()<EPS;} // 3D

9 bool operator/(ln l){return abs(pq.unit()%l.pq.unit())<EPS;} // 2D

10 bool operator==(ln l){return *this/l&&has(l.p);}

11 pt operator^(ln l){ // intersection

12 if(*this/l)return pt(DINF,DINF);

13 pt r=l.p+l.pq*((p-l.p)%pq/(l.pq%pq));

14 // if(!has(r)){return pt(NAN,NAN,NAN);} // check only for 3D

15 return r;

16 }

17 double angle(ln l){return pq.angle(l.pq);}

18 int side(pt r){return has(r)?0:sgn2(pq%(r-p));} // 2D

19 pt proj(pt r){return p+pq*((r-p)*pq/pq.norm2());}

20 pt ref(pt r){return proj(r)*2-r;}

21 double dist(pt r){return (r-proj(r)).norm();}

22 // double dist(ln l){ // only 3D

23 // if(*this/l)return dist(l.p);

24 // return abs((l.p-p)*(pq^l.pq))/(pq^l.pq).norm();

25 // }

26 ln rot(auto a){return ln(p,p+pq.rot(a));} // 2D

27 };

28 ln bisector(ln l, ln m){ // angle bisector

29 pt p=l^m;

30 return ln(p,p+l.pq.unit()+m.pq.unit());

31 }

32 ln bisector(pt p, pt q){ // segment bisector (2D)

33 return ln((p+q)*.5,p).rot(ccw90);

34 }

4.3 Circle

1 struct circle {

2 pt o;double r;

3 circle(pt o, double r):o(o),r(r){}

4 circle(pt x, pt y, pt z){o=bisector(x,y)^bisector(x,z);r=(o-x).norm();}

5 vector<pt> operator^(circle c){ // ccw

6 vector<pt> s;

7 double d=(o-c.o).norm();

8 if(d>r+c.r+EPS||d+min(r,c.r)+EPS<max(r,c.r))return s;

9 double x=(d*d-c.r*c.r+r*r)/(2*d);

10 double y=sqrt(r*r-x*x);

11 pt v=(c.o-o)/d;

12 s.pb(o+v*x-v.rot(ccw90)*y);

13 if(y>EPS)s.pb(o+v*x+v.rot(ccw90)*y);

14 return s;

15 }

16 vector<pt> operator^(ln l){

17 vector<pt> s;

18 pt p=l.proj(o);

19 double d=(p-o).norm();

20 if(d-EPS>r)return s;

21 if(abs(d-r)<EPS){s.pb(p);return s;}

22 d=sqrt(r*r-d*d);

23 s.pb(p+l.pq.unit()*d);

24 s.pb(p-l.pq.unit()*d);

25 return s;

26 }

27 vector<pt> tang(pt p){

28 double d=sqrt((p-o).norm2()-r*r);

29 return *this^circle(p,d);

30 }

31 double intertriangle(pt a, pt b){ // area of intersection with oab

32 if(abs((o-a)%(o-b))<EPS)return 0.;

33 vector<pt> q={a},w=*this^ln(a,b);

34 if(w.size()==2)for(auto p:w)if((a-p)*(b-p)<-EPS)q.pb(p);

35 q.pb(b);

36 if(q.size()==4&&(q[0]-q[1])*(q[2]-q[1])>EPS)swap(q[1],q[2]);

37 double s=0;

38 forn(i,q.size()-1){

39 if(!has(q[i])||!has(q[i+1]))s+=r*r*(q[i]-o).angle(q[i+1]-o)/2;

40 else s+=abs((q[i]-o)%(q[i+1]-o)/2);

41 }

42 return s;

43 }

44 };

45 vector<double> intercircles(vector<circle> c){

46 vector<double> r(sz(c)+1); // r[k]: area covered by at least k circles

47 forn(i,sz(c)){ // O(n^2 log n) (high constant)

48 int k=1;Cmp s(c[i].o);

49 vector<pair<pt,int> > p={

50 mp(c[i].o+pt(1,0)*c[i].r,0),

51 mp(c[i].o-pt(1,0)*c[i].r,0)};

52 forn(j,sz(c))if(j!=i){

53 bool b0=c[i].in(c[j]),b1=c[j].in(c[i]);
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54 if(b0&&(!b1||i<j))k++;

55 else if(!b0&&!b1){

56 auto v=c[i]^c[j];

57 if(sz(v)==2){

58 p.pb(mp(v[0],1));p.pb(mp(v[1],-1));

59 if(s(v[1],v[0]))k++;

60 }

61 }

62 }

63 sort(p.begin(),p.end(),

64 [&](pair<pt,int> a, pair<pt,int> b){return s(a.fst,b.fst);});

65 forn(j,sz(p)){

66 pt p0=p[j?j-1:sz(p)-1].fst,p1=p[j].fst;

67 double a=(p0-c[i].o).angle(p1-c[i].o);

68 r[k]+=(p0.x-p1.x)*(p0.y+p1.y)/2+c[i].r*c[i].r*(a-sin(a))/2;

69 k+=p[j].snd;

70 }

71 }

72 return r;

73 }

4.4 Polygon

1 int sgn(double x){return x<-EPS?-1:x>EPS;}

2 struct pol {

3 int n;vector<pt> p;

4 pol(){}

5 pol(vector<pt> _p){p=_p;n=p.size();}

6 bool has(pt q){ // O(n)

7 forn(i,n)if(ln(p[i],p[(i+1)%n]).seghas(q))return true;

8 int cnt=0;

9 forn(i,n){

10 int j=(i+1)%n;

11 int k=sgn((q-p[j])%(p[i]-p[j]));

12 int u=sgn(p[i].y-q.y),v=sgn(p[j].y-q.y);

13 if(k>0&&u<0&&v>=0)cnt++;

14 if(k<0&&v<0&&u>=0)cnt--;

15 }

16 return cnt!=0;

17 }

18 void normalize(){ // (call before haslog, remove collinear first)

19 if(p[2].left(p[0],p[1]))reverse(p.begin(),p.end());

20 int pi=min_element(p.begin(),p.end())-p.begin();

21 vector<pt> s(n);

22 forn(i,n)s[i]=p[(pi+i)%n];

23 p.swap(s);

24 }

25 bool haslog(pt q){ // O(log(n)) only CONVEX. Call normalize first

26 if(q.left(p[0],p[1])||q.left(p.back(),p[0]))return false;

27 int a=1,b=p.size()-1; // returns true if point on boundary

28 while(b-a>1){ // (change sign of EPS in left

29 int c=(a+b)/2; // to return false in such case)

30 if(!q.left(p[0],p[c]))a=c;

31 else b=c;

32 }

33 return !q.left(p[a],p[a+1]);

34 }

35 pt farthest(pt v){ // O(log(n)) only CONVEX

36 if(n<10){

37 int k=0;

38 forr(i,1,n)if(v*(p[i]-p[k])>EPS)k=i;

39 return p[k];

40 }

41 if(n==sz(p))p.pb(p[0]);

42 pt a=p[1]-p[0];

43 int s=0,e=n,ua=v*a>EPS;

44 if(!ua&&v*(p[n-1]-p[0])<=EPS)return p[0];

45 while(1){

46 int m=(s+e)/2;pt c=p[m+1]-p[m];

47 int uc=v*c>EPS;

48 if(!uc&&v*(p[m-1]-p[m])<=EPS)return p[m];

49 if(ua&&(!uc||v*(p[s]-p[m])>EPS))e=m;

50 else if(ua||uc||v*(p[s]-p[m])>=-EPS)s=m,a=c,ua=uc;

51 else e=m;

52 assert(e>s+1);

53 }

54 }

55 pol cut(ln l){ // cut CONVEX polygon by line l

56 vector<pt> q; // returns part at left of l.pq

57 forn(i,n){

58 int d0=sgn(l.pq%(p[i]-l.p)),d1=sgn(l.pq%(p[(i+1)%n]-l.p));

59 if(d0>=0)q.pb(p[i]);

60 ln m(p[i],p[(i+1)%n]);

61 if(d0*d1<0&&!(l/m))q.pb(l^m);

62 }

63 return pol(q);

64 }
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65 double intercircle(circle c){ // area of intersection with circle

66 double r=0.;

67 forn(i,n){

68 int j=(i+1)%n;double w=c.intertriangle(p[i],p[j]);

69 if((p[j]-c.o)%(p[i]-c.o)>0)r+=w;

70 else r-=w;

71 }

72 return abs(r);

73 }

74 double callipers(){ // square distance of most distant points

75 double r=0; // prereq: convex, ccw, NO COLLINEAR POINTS

76 for(int i=0,j=n<2?0:1;i<j;++i){

77 for(;;j=(j+1)%n){

78 r=max(r,(p[i]-p[j]).norm2());

79 if((p[(i+1)%n]-p[i])%(p[(j+1)%n]-p[j])<=EPS)break;

80 }

81 }

82 return r;

83 }

84 };

85 // Dynamic convex hull trick

86 vector<pol> w;

87 void add(pt q){ // add(q), O(log^2(n))

88 vector<pt> p={q};

89 while(!w.empty()&&sz(w.back().p)<2*sz(p)){

90 for(pt v:w.back().p)p.pb(v);

91 w.pop_back();

92 }

93 w.pb(pol(chull(p)));

94 }

95 ll query(pt v){ // max(q*v:q in w), O(log^2(n))

96 ll r=-INF;

97 for(auto& p:w)r=max(r,p.farthest(v)*v);

98 return r;

99 }

4.5 Plane

1 struct plane {

2 pt a,n; // n: normal unit vector

3 plane(pt a, pt b, pt c):a(a),n(((b-a)^(c-a)).unit()){}

4 plane(){}

5 bool has(pt p){return abs((p-a)*n)<EPS;}

6 double angle(plane w){return acos(n*w.n);}

7 double dist(pt p){return abs((p-a)*n);}

8 pt proj(pt p){inter(ln(p,p+n),p);return p;}

9 bool inter(ln l, pt& r){

10 double x=n*(l.p+l.pq-a),y=n*(l.p-a);

11 if(abs(x-y)<EPS)return false;

12 r=(l.p*x-(l.p+l.pq)*y)/(x-y);

13 return true;

14 }

15 bool inter(plane w, ln& r){

16 pt nn=n^w.n;

17 pt v=n^nn;

18 double d=w.n*v;

19 if(abs(d)<EPS)return false;

20 pt p=a+v*(w.n*(w.a-a)/d);

21 r=ln(p,p+nn);

22 return true;

23 }

24 };

4.6 Convex hull

1 // CCW order

2 // Includes collinear points (change sign of EPS in left to exclude)

3 vector<pt> chull(vector<pt> p){

4 vector<pt> r;

5 sort(p.begin(),p.end()); // first x, then y

6 forn(i,p.size()){ // lower hull

7 while(r.size()>=2&&r.back().left(r[r.size()-2],p[i]))r.pop_back();

8 r.pb(p[i]);

9 }

10 r.pop_back();

11 int k=r.size();

12 for(int i=p.size()-1;i>=0;--i){ // upper hull

13 while(r.size()>=k+2&&r.back().left(r[r.size()-2],p[i]))r.pop_back();

14 r.pb(p[i]);

15 }

16 r.pop_back();

17 return r;

18 }

5 Strings

5.1 KMP

1 vector<int> kmppre(string& t){ // r[i]: longest border of t[0,i)
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2 vector<int> r(t.size()+1);r[0]=-1;

3 int j=-1;

4 forn(i,t.size()){

5 while(j>=0&&t[i]!=t[j])j=r[j];

6 r[i+1]=++j;

7 }

8 return r;

9 }

10 void kmp(string& s, string& t){ // find t in s

11 int j=0;vector<int> b=kmppre(t);

12 forn(i,s.size()){

13 while(j>=0&&s[i]!=t[j])j=b[j];

14 if(++j==sz(t))printf("Match at %d\n",i-j+1),j=b[j];

15 }

16 }

5.2 Z function

1 vector<int> z_function(string& s){

2 int a=0,b=0,n=sz(s);

3 vector<int> z(n,0); // z[i] = max k: s[0,k) == s[i,i+k)

4 forr(i,1,n){

5 if(i<=b)z[i]=min(b-i+1,z[i-a]);

6 while(i+z[i]<n&&s[z[i]]==s[i+z[i]])z[i]++;

7 if(i+z[i]-1>b)a=i,b=i+z[i]-1;

8 }

9 return z;

10 }

5.3 Manacher

1 int d1[MAXN];//d1[i] = max odd palindrome centered on i

2 int d2[MAXN];//d2[i] = max even palindrome centered on i

3 //s aabbaacaabbaa

4 //d1 1111117111111

5 //d2 0103010010301

6 void manacher(string& s){

7 int l=0,r=-1,n=s.size();

8 forn(i,n){

9 int k=i>r?1:min(d1[l+r-i],r-i);

10 while(i+k<n&&i-k>=0&&s[i+k]==s[i-k])k++;

11 d1[i]=k--;

12 if(i+k>r)l=i-k,r=i+k;

13 }

14 l=0;r=-1;

15 forn(i,n){

16 int k=i>r?0:min(d2[l+r-i+1],r-i+1);k++;

17 while(i+k<=n&&i-k>=0&&s[i+k-1]==s[i-k])k++;

18 d2[i]=--k;

19 if(i+k-1>r)l=i-k,r=i+k-1;

20 }

21 }

5.4 Aho-Corasick

1 struct vertex {

2 map<char,int> next,go;

3 int p,link;

4 char pch;

5 vector<int> leaf;

6 vertex(int p=-1, char pch=-1):p(p),pch(pch),link(-1){}

7 };

8 vector<vertex> t;

9 void aho_init(){ //do not forget!!

10 t.clear();t.pb(vertex());

11 }

12 void add_string(string s, int id){

13 int v=0;

14 for(char c:s){

15 if(!t[v].next.count(c)){

16 t[v].next[c]=t.size();

17 t.pb(vertex(v,c));

18 }

19 v=t[v].next[c];

20 }

21 t[v].leaf.pb(id);

22 }

23 int go(int v, char c);

24 int get_link(int v){

25 if(t[v].link<0)

26 if(!v||!t[v].p)t[v].link=0;

27 else t[v].link=go(get_link(t[v].p),t[v].pch);

28 return t[v].link;

29 }

30 int go(int v, char c){

31 if(!t[v].go.count(c))

32 if(t[v].next.count(c))t[v].go[c]=t[v].next[c];

33 else t[v].go[c]=v==0?0:go(get_link(v),c);
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34 return t[v].go[c];

35 }

5.5 Suffix automaton

1 struct state {int len,link;map<char,int> next;}; //clear next!!

2 state st[100005]; // should be >= 2*sz(s)

3 int sz,last;

4 void sa_init(){

5 last=st[0].len=0;sz=1;

6 st[0].link=-1;

7 }

8 void sa_extend(char c){

9 int k=sz++,p;

10 st[k].len=st[last].len+1;

11 for(p=last;p!=-1&&!st[p].next.count(c);p=st[p].link)st[p].next[c]=k;

12 if(p==-1)st[k].link=0;

13 else {

14 int q=st[p].next[c];

15 if(st[p].len+1==st[q].len)st[k].link=q;

16 else {

17 int w=sz++;

18 st[w].len=st[p].len+1;

19 st[w].next=st[q].next;st[w].link=st[q].link;

20 for(;p!=-1&&st[p].next[c]==q;p=st[p].link)st[p].next[c]=w;

21 st[q].link=st[k].link=w;

22 }

23 }

24 last=k;

25 }

5.6 Suffix array

1 #define RB(x) (x<n?r[x]:0)

2 void csort(vector<int>& sa, vector<int>& r, int k){

3 int n=sa.size();

4 vector<int> f(max(255,n),0),t(n);

5 forn(i,n)f[RB(i+k)]++;

6 int sum=0;

7 forn(i,max(255,n))f[i]=(sum+=f[i])-f[i];

8 forn(i,n)t[f[RB(sa[i]+k)]++]=sa[i];

9 sa=t;

10 }

11 vector<int> constructSA(string& s){ // O(n logn)

12 int n=s.size(),rank;

13 vector<int> sa(n),r(n),t(n);

14 forn(i,n)sa[i]=i,r[i]=s[i];

15 for(int k=1;k<n;k*=2){

16 csort(sa,r,k);csort(sa,r,0);

17 t[sa[0]]=rank=0;

18 forr(i,1,n){

19 if(r[sa[i]]!=r[sa[i-1]]||RB(sa[i]+k)!=RB(sa[i-1]+k))rank++;

20 t[sa[i]]=rank;

21 }

22 r=t;

23 if(r[sa[n-1]]==n-1)break;

24 }

25 return sa;

26 }

5.7 LCP (Longest Common Prefix)

1 vector<int> computeLCP(string& s, vector<int>& sa){

2 int n=s.size(),L=0;

3 vector<int> lcp(n),plcp(n),phi(n);

4 phi[sa[0]]=-1;

5 forr(i,1,n)phi[sa[i]]=sa[i-1];

6 forn(i,n){

7 if(phi[i]<0){plcp[i]=0;continue;}

8 while(s[i+L]==s[phi[i]+L])L++;

9 plcp[i]=L;

10 L=max(L-1,0);

11 }

12 forn(i,n)lcp[i]=plcp[sa[i]];

13 return lcp; // lcp[i]=LCP(sa[i-1],sa[i])

14 }

5.8 Suffix Tree (Ukkonen’s algorithm)

1 struct SuffixTree {

2 char s[MAXN];

3 map<int,int> to[MAXN];

4 int len[MAXN]={INF},fpos[MAXN],link[MAXN];

5 int node,pos,sz=1,n=0;

6 int make_node(int p, int l){

7 fpos[sz]=p;len[sz]=l;return sz++;}

8 void go_edge(){

9 while(pos>len[to[node][s[n-pos]]]){
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10 node=to[node][s[n-pos]];

11 pos-=len[node];

12 }

13 }

14 void add(int c){

15 s[n++]=c;pos++;

16 int last=0;

17 while(pos>0){

18 go_edge();

19 int edge=s[n-pos];

20 int& v=to[node][edge];

21 int t=s[fpos[v]+pos-1];

22 if(v==0){

23 v=make_node(n-pos,INF);

24 link[last]=node;last=0;

25 }

26 else if(t==c){link[last]=node;return;}

27 else {

28 int u=make_node(fpos[v],pos-1);

29 to[u][c]=make_node(n-1,INF);

30 to[u][t]=v;

31 fpos[v]+=pos-1;len[v]-=pos-1;

32 v=u;link[last]=u;last=u;

33 }

34 if(node==0)pos--;

35 else node=link[node];

36 }

37 }

38 };

5.9 Hashing

1 struct Hash {

2 int P=1777771,MOD[2],PI[2];

3 vector<int> h[2],pi[2];

4 Hash(const string& s){

5 MOD[0]=999727999;MOD[1]=1070777777;

6 PI[0]=325255434;PI[1]=10018302;

7 forn(k,2)h[k].resize(sz(s)+1),pi[k].resize(sz(s)+1);

8 forn(k,2){

9 h[k][0]=0;pi[k][0]=1;

10 ll p=1;

11 forr(i,1,sz(s)+1){

12 h[k][i]=(h[k][i-1]+p*s[i-1])%MOD[k];

13 pi[k][i]=(1LL*pi[k][i-1]*PI[k])%MOD[k];

14 p=(p*P)%MOD[k];

15 }

16 }

17 }

18 ll get(int s, int e){

19 ll r[2]; forn(k, 2){

20 r[k]=(h[k][e]-h[k][s]+MOD[k])%MOD[k];

21 r[k]=(1LL*r[k]*pi[k][s])%MOD[k];

22 }

23 return (r[0]<<32)|r[1];

24 }

25 };

6 Flow

6.1 Matching (slower)

1 vector<int> g[MAXN]; // [0,n)->[0,m)

2 int n,m;

3 int mat[MAXM];bool vis[MAXN];

4 int match(int x){

5 if(vis[x])return 0;

6 vis[x]=true;

7 for(int y:g[x])if(mat[y]<0||match(mat[y])){mat[y]=x;return 1;}

8 return 0;

9 }

10 vector<pair<int,int> > max_matching(){

11 vector<pair<int,int> > r;

12 memset(mat,-1,sizeof(mat));

13 forn(i,n)memset(vis,false,sizeof(vis)),match(i);

14 forn(i,m)if(mat[i]>=0)r.pb(mp(mat[i],i));

15 return r;

16 }

6.2 Matching (Hopcroft-Karp)

1 vector<int> g[MAXN]; // [0,n)->[0,m)

2 int n,m;

3 int mt[MAXN],mt2[MAXN],ds[MAXN];

4 bool bfs(){

5 queue<int> q;

6 memset(ds,-1,sizeof(ds));

7 forn(i,n)if(mt2[i]<0)ds[i]=0,q.push(i);

8 bool r=false;
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9 while(!q.empty()){

10 int x=q.front();q.pop();

11 for(int y:g[x]){

12 if(mt[y]>=0&&ds[mt[y]]<0)ds[mt[y]]=ds[x]+1,q.push(mt[y]);

13 else if(mt[y]<0)r=true;

14 }

15 }

16 return r;

17 }

18 bool dfs(int x){

19 for(int y:g[x])if(mt[y]<0||ds[mt[y]]==ds[x]+1&&dfs(mt[y])){

20 mt[y]=x;mt2[x]=y;

21 return true;

22 }

23 ds[x]=1<<30;

24 return false;

25 }

26 int mm(){

27 int r=0;

28 memset(mt,-1,sizeof(mt));memset(mt2,-1,sizeof(mt2));

29 while(bfs()){

30 forn(i,n)if(mt2[i]<0)r+=dfs(i);

31 }

32 return r;

33 }

6.3 Hungarian

1 typedef double th;

2 const th INF=1e18; // to maximize: set INF to 1, use negative values

3 struct Hungarian {

4 int n,m; // important: n must be <=m

5 vector<vector<th> > a;

6 vector<th> u,v;vector<int> p,way; // p: assignment

7 Hungarian(int n, int m):

8 n(n),m(m),a(n+1,vector<th>(m+1,INF-1)),u(n+1),v(m+1),p(m+1),way(m+1){}

9 void set(int x, int y, th v){a[x+1][y+1]=v;}

10 th assign(){

11 forr(i,1,n+1){

12 int j0=0;p[0]=i;

13 vector<th> minv(m+1,INF);

14 vector<char> used(m+1,false);

15 do {

16 used[j0]=true;

17 int i0=p[j0],j1;th delta=INF;

18 forr(j,1,m+1)if(!used[j]){

19 th cur=a[i0][j]-u[i0]-v[j];

20 if(cur<minv[j])minv[j]=cur,way[j]=j0;

21 if(minv[j]<delta)delta=minv[j],j1=j;

22 }

23 forn(j,m+1)

24 if(used[j])u[p[j]]+=delta,v[j]-=delta;

25 else minv[j]-=delta;

26 j0=j1;

27 } while(p[j0]);

28 do {

29 int j1=way[j0];p[j0]=p[j1];j0=j1;

30 } while(j0);

31 }

32 return -v[0]; // cost

33 }

34 };

6.4 Dinic

1 // Min cut: nodes with dist>=0 vs nodes with dist<0

2 // MVC (bipartite): left nodes with dist<0 + right nodes with dist>0

3 int nodes,src,dst; // remember to init nodes

4 int dist[MAXN],q[MAXN],work[MAXN];

5 // ll M[MAXN]; (MIN CAP)

6 struct edge {int to,rev;ll f,cap;};

7 vector<edge> g[MAXN];

8 void add_edge(int s, int t, ll cap/*, ll lcap = 0 (MIN CAP)*/){

9 // if(lcap) M[s] -= lcap, M[t] += lcap, cap -= lcap; (MIN CAP)

10 g[s].pb((edge){t,sz(g[t]),0,cap});

11 g[t].pb((edge){s,sz(g[s])-1,0,0});

12 }

13 bool dinic_bfs(){

14 fill(dist,dist+nodes,-1);dist[src]=0;

15 int qt=0;q[qt++]=src;

16 forn(qh,qt){

17 int u=q[qh];

18 forn(i,sz(g[u])){

19 edge &e=g[u][i];int v=g[u][i].to;

20 if(dist[v]<0&&e.f<e.cap)dist[v]=dist[u]+1,q[qt++]=v;

21 }

22 }

23 return dist[dst]>=0;
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24 }

25 ll dinic_dfs(int u, ll f){

26 if(u==dst)return f;

27 for(int &i=work[u];i<sz(g[u]);i++){

28 edge &e=g[u][i];

29 if(e.cap<=e.f)continue;

30 int v=e.to;

31 if(dist[v]==dist[u]+1){

32 ll df=dinic_dfs(v,min(f,e.cap-e.f));

33 if(df>0){e.f+=df;g[v][e.rev].f-=df;return df;}

34 }

35 }

36 return 0;

37 }

38 ll max_flow(int _src, int _dst){ // O(m n^2)

39 src=_src;dst=_dst; // if unit weights, O(m min(sqrt(m), n^{2/3}))

40 ll result=0; // if bipartite matching, O(m sqrt(n))

41 while(dinic_bfs()){

42 fill(work, work+nodes, 0);

43 while(ll delta=dinic_dfs(src,INF))result+=delta;

44 }

45 return result;

46 }

47 //Checks if a strongly connected flow network has a feasible flow

distribution

48 bool feasible(int n){ // n = number of nodes in the network

49 src = n, dst = n+1, nodes = n+2;

50 forn(i, n){

51 if(M[i] > 0)add_edge(src, i, M[i]);

52 if(M[i] < 0)add_edge(i, dst, -M[i]);

53 }

54 max_flow(src, dst);

55 for(edge e : g[src]) if(e.f < e.cap) return false;

56 return true;

57 }

6.5 Min cost max flow

1 typedef ll tf;const tf INFFLUJO=1e14;

2 typedef ll tc;const tc INFCOSTO=1e14;

3 struct edge {

4 int u,v;tf cap,flow;tc cost;

5 tf rem(){return cap-flow;}

6 };

7 int nodes; // remember to init nodes

8 vector<int> g[MAXN];

9 vector<edge> e;

10 void add_edge(int u, int v, tf cap, tc cost) {

11 g[u].pb(e.size());e.pb((edge){u,v,cap,0,cost});

12 g[v].pb(e.size());e.pb((edge){v,u,0,0,-cost});

13 }

14 tc dist[MAXN],mncost;

15 int pre[MAXN];

16 tf cap[MAXN],mxflow;

17 bool in_queue[MAXN];

18 void flow(int s, int t){

19 memset(in_queue,0,sizeof(in_queue));

20 mxflow=mncost=0;

21 while(1){

22 fill(dist,dist+nodes,INFCOSTO);dist[s]=0;

23 memset(pre,-1,sizeof(pre));pre[s]=0;

24 memset(cap,0,sizeof(cap));cap[s]=INFFLUJO;

25 queue<int> q;q.push(s);in_queue[s]=1;

26 while(q.size()){

27 int u=q.front();q.pop();in_queue[u]=0;

28 forn(_,g[u].size()){

29 int i=g[u][_];

30 edge &E=e[i];

31 if(E.rem()&&dist[E.v]>dist[u]+E.cost+1e-9){

32 dist[E.v]=dist[u]+E.cost;

33 pre[E.v]=i;

34 cap[E.v]=min(cap[u],E.rem());

35 if(!in_queue[E.v])q.push(E.v),in_queue[E.v]=1;

36 }

37 }

38 }

39 if(pre[t]<0)break;

40 mxflow+=cap[t];mncost+=cap[t]*dist[t];

41 for(int v=t;v!=s;v=e[pre[v]].u){

42 e[pre[v]].flow+=cap[t];e[pre[v]^1].flow-=cap[t];

43 }

44 }

45 }

7 Other

7.1 Mo’s algorithm
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1 int n,sq,nq; // array size, sqrt(array size), #queries

2 struct qu{int l,r,id;}; // O((n+nq)*sqrt(n)*update)

3 qu qs[MAXN];

4 ll ans[MAXN]; // ans[i] = answer to ith query

5 bool qcomp(const qu &a, const qu &b){

6 if(a.l/sq!=b.l/sq) return a.l<b.l;

7 return (a.l/sq)&1?a.r<b.r:a.r>b.r;

8 }

9 void mos(){

10 forn(i,nq)qs[i].id=i;

11 sq=sqrt(n)+.5;

12 sort(qs,qs+nq,qcomp);

13 int l=0,r=0;

14 init();

15 forn(i,nq){

16 qu q=qs[i];

17 while(l>q.l)add(--l);

18 while(r<q.r)add(r++);

19 while(l<q.l)remove(l++);

20 while(r>q.r)remove(--r);

21 ans[q.id]=get_ans();

22 }

23 }

7.2 Divide and conquer DP optimization

1 // O(knlogn). For 2D dps, when the position of optimal choice is non-

decreasing as the second variable increases

2 int k,n,f[MAXN],f2[MAXN];

3 void doit(int s, int e, int s0, int e0, int i){

4 // [s,e): range of calculation, [s0,e0): range of optimal choice

5 if(s==e)return;

6 int m=(s+e)/2,r=INF,rp;

7 forr(j,s0,min(e0,m)){

8 int r0=f[j]+something(j,m-1); // calculate cost of taking [j,m-1]

9 if(r0<r)r=r0,rp=j; // position of optimal choice

10 }

11 f2[m]=r;

12 doit(s,m,s0,rp+1,i);doit(m+1,e,rp,e0,i);

13 }

14 int doall(){

15 init_base_cases();

16 forr(i,1,k+1)doit(1,n+1,0,n,i),memcpy(f,f2,sizeof(f));

17 return f[n];

18 }

7.3 Dates

1 int dateToInt(int y, int m, int d){ // 1-indexado (mes 2 = febrero)

2 return 1461*(y+4800+(m-14)/12)/4+367*(m-2-(m-14)/12*12)/12-

3 3*((y+4900+(m-14)/12)/100)/4+d-32075;

4 }

5 void intToDate(int jd, int& y, int& m, int& d){

6 int x,n,i,j;x=jd+68569;

7 n=4*x/146097;x-=(146097*n+3)/4;

8 i=(4000*(x+1))/1461001;x-=1461*i/4-31;

9 j=80*x/2447;d=x-2447*j/80;

10 x=j/11;m=j+2-12*x;y=100*(n-49)+i+x;

11 }

7.4 C++ stuff

1 const double DINF=numeric_limits<double>::infinity(); // double inf

2 // Custom comparator for set/map

3 struct comp {

4 bool operator()(const double& a, const double& b) const {

5 return a+EPS<b;}

6 };

7 set<double,comp> w; // or map<double,int,comp>

8 // Iterate over non empty subsets of bitmask

9 for(int s=m;s;s=(s-1)&m) // Decreasing order

10 for (int s=0;s=s-m&m;) // Increasing order

11 // Returns the number of trailing 0-bits in x. x=0 is undefined.

12 int __builtin_ctz (unsigned int x)

13 // Returns the number of leading 0-bits in x. x=0 is undefined.

14 int __builtin_clz (unsigned int x)

15 // Use corresponding versions for long long appending ll at the end.

16 v=(x&(-x)) // Get the value of the least significant bit that is one.

7.5 Max number of divisors up to 10n

1 (0,1) (1,4) (2,12) (3,32) (4,64) (5,128) (6,240) (7,448) (8,768) (9,1344)

(10,2304) (11,4032) (12,6720) (13,10752) (14,17280) (15,26880)

(16,41472) (17,64512) (18,103680)
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