
Estructuras de Datos
Román Castellarin

1

Estructuras

2

Array

Vector

Stack

Queue

Priority Queue

Deque

Linked List

Set

Map

Unordered Set

Unordered Map

Introducción

Las estructuras de datos nos presentan formas de organizar, almacenar y
consultar datos.

Cada una de ellas tiene sus ventajas y desventajas.

Por lo tanto, al diseñar un algoritmo es importante elegir aquélla que
permita realizar eficientemente las operaciones en las cuales estamos
interesados.

3

Biblioteca Estándar C++

Existe un puñado de estructuras básicas que todo programador debe
conocer y manejar.

Por suerte, la biblioteca estándar de C++ trae en ella muchas de estas
estructuras ya implementadas.

Para la programación competitiva, por lo general es sólo necesario saber lo
suficiente para seleccionar y utilizar la estructura adecuada.

4

Estructuras
contiguas

5

Arrays

Tan básico que muchas veces ni se lo considera una estructura de datos.
Tienen un tamaño fijo y acceso aleatorio constante.

A menos que un valor sea explicitado, son default-inicializados.

float A[100] = {}; // 100 floats inicializados a 0.0

int B[10][50]; // 500 ints inicializados al azar

6

Vector

Es una suerte de array con tamaño dinámico. #include<vector>

vector<int> A; // vector de ints vacio

vector<int> A(5); // vector de 5 ints inicializados a 0 (default)

vector<int> A(5, 7); // vector de 5 ints inicializados a 7

7

Vector

Algunas de sus operaciones son:

.size() devuelve el tamaño (cant. de elementos)

.empty() devuelve true sii está vacío

.clear() vacía la estructura

Estas son operaciones comunes a la mayoría de las estructuras de la
biblioteca estándar de C++.

8

Vector

Algunas de las operaciones propias de vector son:

[i] accede al elemento i-ésimo O(1)
.push_back(x) inserta x al final O(1) amort.
.pop_back() elimina el último elemento O(1) amort.

.resize(n) redimensiona, si n > size() entonces rellena con x

.resize(n, x) o el valor por defecto O(| size() - n |) amort.

9

colecciones tipo
bolsa

10

Stack

Es una pila (LIFO). #include <stack>

stack<char> S; // pila de chars

S.push(’A’);

S.push(’B’);

S.push(’C’);

cout << S.size() << ’ ’ << S.top() << endl; // 3 C

S.pop();

cout << S.size() << ’ ’ << S.top() << endl ; // 2 B

11

Stack

Operaciones

.push(x) coloca x en el tope O(1)

.top() retorna el tope O(1)

.pop() desapila el tope O(1)

Las pilas no son muy utilizadas ya que pueden ser reemplazadas por un
vector, o por recursión en algunos algoritmos.

12

Queue

Es una cola (FIFO). #include <queue>

queue<char> Q; // cola de chars

Q.push(’A’);

Q.push(’B’);

Q.push(’C’);

cout << Q.size() << ’ ’ << Q.front() << endl; // 3 A

Q.pop();

cout << Q.size() << ’ ’ << Q.front() << endl ; // 2 B

13

Queue

Operaciones

.push(x) coloca x al final O(1)

.front() retorna el primer elemento O(1)

.pop() elimina el primer elemento O(1)

Las colas son extremadamente comunes

14

Es una bolsa donde se extrae el elemento de mayor prioridad.
La prioridad está dada por operator<.
#include <queue>

priority_queue<int> Q; // cola de prioridad de ints

Q.push(50);

Q.push(100);

Q.push(20);

cout << Q.size() << ’ ’ << Q.top() << endl; // 3 100

Q.pop();

cout << Q.size() << ’ ’ << Q.top() << endl ; // 2 50

Priority Queue

15

Priority Queue

Operaciones

.push(x) coloca x adentro de la bolsa O(log n)

.top() retorna el mayor elemento O(1)

.pop() elimina el mayor elemento O(log n)

Las colas de prioridad se usan en muchos algoritmos comunes como
Dijkstra, Huffman, sweep line, etc..

16

Algunas
estructuras
lineales

17

Deque

Pronunciado "deck", es similar al vector pero se puede insertar y borrar
eficientemente en ambos extremos, a costa de que sus elementos no están
contiguos en memoria. #include <deque>

deque<int> Q ; // cola doble de ints

Q.push_back (50);

Q.push_back (100);

Q.push_front (20);

cout << Q.size () << ’ ’ << Q.front() << ’ ’ << Q[1] << endl; // 3 20 50

Q.pop_front();

cout << Q.size () << ’ ’ << Q.back () << ’ ’ << Q[1] << endl; // 2 100 100

18

Deque

Algunas sus operaciones son:

[i] accede al elemento i-ésimo O(1)
.push_back(x) inserta x al final O(1)
.push_front(x) inserta x al inicio O(1)
.pop_back() elimina el último elemento O(1)
.pop_front() elimina el primer elemento O(1)

A pesar de que esta estructura parece ganarle a todas las anteriores
excepto priority_queue, tiene constante computacional muy alta

19

Linked List

Listas doblemente enlazadas.
 #include <list>

list<int> L; // lista de ints

L.push_front(40);

L.push_back(50);

auto p = L.begin(); // begin() y end() son O(1)

L.push_front(20); // no invalida p

L.push_front(10); // no invalida p

L.insert(p , 30); // O(1) porque sabemos la posición exacta

for(auto &x : L)

cout << x << ’ ’; // 10 20 30 40 50

20

Linked List

Algunas sus operaciones son:

.push_back(x) inserta x al final O(1)

.push_front(x) inserta x al inicio O(1)

.pop_back() elimina el último elemento O(1)

.pop_front() elimina el primer elemento O(1)

Para iterar la lista, podemos obtener punteros bidireccionales con begin() y
end()

21

Linked List

Además,...

.insert(p, x) inserta x antes de p O(1)

.erase(p) elimina el elemento en p O(1)

.merge(L
2
) mergea L2 en L O(N + N2)

.sort() ordena la lista O(N log N)

Esta estructura no se usa casi nunca a menos que se requiera insertar
elementos en el medio dada la posición.

22

Estructuras no
lineales

23

Set

Se lo puede pensar como una colección ordenada de elementos únicos.

A pesar de su nombre, no soporta eficientemente las operaciones
comunes de conjuntos (unión, intersección, diferencia, etc…).

Al igual que las colas de prioridad, necesitan que exista un orden estricto
definido entre sus elementos (esto no es verdad en matemática).

En un set no puede haber dos elementos equivalentes
(a y b se consideran equivalentes cuando a≮b y b≮a).

24

#include <set>

set<int> S; // conjunto de ints

S.insert(4);

S.insert(8);

cout << S.size() << endl; // 2

S.insert(8); // no se inserta porque 8 es equivalente a 8

cout << S.size() << endl; // 2 todavia

cout << *S.lower_bound(4) << ’ ’<< *S.upper_bound(4) << endl; // 4 8

Set

25

Set

Algunas sus operaciones son:

.insert(x) inserta x O(log n)

.erase(x) elimina x O(log n)

.count(x) verifica si x está presente en la estructura O(log n)

.lower_bound(x) retorna un puntero al primer elemento mayor o igual a x O(log n)

.upper_bound(x) retorna un puntero al primer elemento estrict. mayor a x O(log n)

Para iterar el set, podemos obtener punteros bidireccionales con begin() y
end(). Recordemos que el set está ordenado, así que el mín elemento de S
es *S.begin() y el último es *S.rbegin()

26

Map

Representan diccionarios.

Pueden ser pensados como sets, en los cuales a cada uno de sus
elementos (key) le es asociado un valor (value).

Notemos que los tipos de la claves y los valores no necesariamente deben
coincidir, i.e, podemos asociar números a strings.

Son como arrays donde las claves pueden ser cualquier tipo ordenado.

27

Map

Su operación importante es:

[x] el valor asociado a x (si no existe lo crea) O(log n)

Todas las operaciones de set valen (como si se realizasen sobre las claves)

28

#include <map>

...

map<int,char> M; // mapeo de int → char

M[5] = ’A’; // asociamos 5 con ’A’

cout << M.size() << endl; // 1

if(M[7] != ’R’) // creamos sin querer una nuevo par clave - valor !

cout << "ESTO ESTA TAN MAL !" << endl;

cout << M.size() << endl; // 2 (oops !)

if(M.count(4) and M[4] == ’T’) // esto esta bien

cout << "Pregunto si existe, luego si es lo que busco" << endl ;

Map

29

Tablas de hash
30

Unordered Set

Se lo puede pensar como un set no ordenado.

En lugar de requerir que sus elementos tengan definido operator<,
se requiere que tengan definido hash<T> y operator==.

Esto permite operaciones de búsqueda, inserción y borrado en O(1),
a costa de perder las operaciones que dependen del orden como
lower_bound, upper_bound, etc...

31

Unordered Map

Se lo puede pensar como un map cuyas claves no están ordenadas.

Unordered map es a map lo que unordered set es a set.

Si conocemos la cantidad de objetos que usaremos podemos aprovechar
para reservar espacio a priori (.reserve, .max_load_factor).

32

