Roman Castellarin

Array

Vector

Stack

Queue

Priority Queue
Deque

Linked List
Set

Map
Unordered Set

Unordered Map

Introduccion

Las estructuras de datos nos presentan formas de organizar, almacenary
consultar datos.

Cada una de ellas tiene sus ventajas y desventajas.
Por lo tanto, al disefiar un algoritmo es importante elegir aquélla que

permita realizar eficientemente las operaciones en las cuales estamos
interesados.

Biblioteca Estandar G++

Existe un pufiado de estructuras basicas que todo programador debe
conocer y manejar.

Por suerte, la biblioteca estandar de C++ trae en ella muchas de estas
estructuras ya implementadas.

Para la programacion competitiva, por lo general es sOlo necesario saber lo
suficiente para seleccionar y utilizar la estructura adecuada.

Arrays

Tan basico que muchas veces ni se lo considera una estructura de datos.
Tienen un tamano fijo y acceso aleatorio constante.

A menos que un valor sea explicitado, son default-inicializados.

float A[100] = {}; // 100 floats inicializados a 0.0
int B[10][50]; // 500 ints inicializados al azar

Vector

Es una suerte de array con tamafio dinamico. #include<vector>

vector<int> A; // vector de ints vacio
vector<int> A(5); // vector de 5 ints inicializados a @ (default)
vector<int> A(5, 7); // vector de 5 ints inicializados a 7

Vector

Algunas de sus operaciones son:

.size() devuelve el tamafo (cant. de elementos)
.empty() devuelve true sii esta vacio
.clear() vacia la estructura

Estas son operaciones comunes a la mayoria de las estructuras de la
biblioteca estandar de C++.

Vector

Algunas de las operaciones propias de vector son:

[1]
.push_back(x)
.pop_back()

.resize(n)
.resize(n, x)

accede al elemento i-ésimo O(1)
inserta x al final O(1) amort.
elimina el Ultimo elemento O(1) amort.

redimensiona, si n > size() entonces rellena con x
o el valor por defecto O(| size() - nl)amort.

colecciones tipo
bolsa

Stack

Es una pila (LIFO). #include <stack>

stack<char> S; // pila de chars

S.push(°A’);

S.push(°B’);

S.push(’°C’°);

cout << S.size() << ? ? << S.top() << endl; // 3 C

S.pop();
cout << S.size() << ? ? << S.top() << endl ; // 2 B

1

Stack

Operaciones

.push(x) coloca x en eltope O(1)
.top() retorna el tope O(1)
.pop() desapila el tope O(1)

Las pilas no son muy utilizadas ya que pueden ser reemplazadas por un
vector, o por recursion en algunos algoritmos.

12

Queue
Es una cola (FIFO). #include <queue>

queue<char> Q; // cola de chars

Q.push(A’);

Q.push(B’);

Q.push(°C*);

cout << Q.size() << ? ? << Q.front() << endl; // 3 A
Q.pop();

cout << Q.size() << ? ? << Q.front() << endl ; // 2 B

13

Operaciones

.push(x) coloca x al final
.front() retorna el primer elemento
.pop() elimina el primer elemento

Las colas son extremadamente comunes

14

Priority Queue

Es una bolsa donde se extrae el elemento de mayor prioridad.

La prioridad esta dada por operator«.
#include <queue>

priority queue<int> Q; // cola de prioridad de ints
Q.push(50);

Q.push(100);

Q.push(20);

cout << Q.size() << ? ’ << Q.top() << endl; // 3 100
Q.pop();

cout << Q.size() << ? ?’ << Q.top() << endl ; // 2 50

15

Priority Queue

Operaciones

.push(x) coloca x adentro de la bolsa O(log n)
.top() retorna el mayor elemento O(1)
.pop() elimina el mayor elemento O(log n)

Las colas de prioridad se usan en muchos algoritmos comunes como
Dijkstra, Huffman, sweep line, etc..

16

Algunas
estructuras
lineales

Pronunciado "deck", es similar al vector pero se puede insertar y borrar
eficientemente en ambos extremos, a costa de que sus elementos no estan
contiguos en memoria. #include <deque>

deque<int> Q ; // cola doble de ints

Q.push _back (50);

Q.push_back (100);

Q.push_front (20);

cout << Q.size () << ’ ? << Q.front() << ’ ’ << Q[1] << endl; // 3 20 50
Q.pop_front();

cout << Q.size () << ? ? << Q.back () << ? ? << Q[1] << endl; // 2 100 100

18

Algunas sus operaciones son:

[1] accede al elemento i-ésimo O(1)
.push_back(x) inserta x al final O(1)
.push_front(x) inserta x al inicio O(1)
.pop_back() elimina el dltimo elemento O(1)
.pop_front() elimina el primer elemento O(1)

A pesar de que esta estructura parece ganarle a todas las anteriores
excepto priority_queue, tiene constante computacional muy alta

Linked List

Listas doblemente enlazadas.
#tinclude <list>

list<int> L; // lista de ints
L.push_front(40);
L.push_back(50);
auto p = L.begin(); // begin() y end() son 0(1)
L.push_front(20); // no invalida p
L.push_front(10); // no invalida p
L.insert(p , 30); // 0(1) porque sabemos la posicidén exacta
for(auto &x : L)
cout << x <<’ ’; // 10 20 30 40 50

20

Linked List

Algunas sus operaciones son:

.push_back(x) inserta x al final O(1)
.push_front(x) inserta x al inicio O(1)
.pop_back() elimina el ultimo elemento O(1)
.pop_front() elimina el primer elemento O(1)

Para iterar la lista, podemos obtener punteros bidireccionales con begin() y
end()

21

Linked List

Ademas,...

.insert(p, x) inserta x antes de p O(1)
.erase(p) elimina el elemento en p O(1)
.merge(L,) mergeal,enlL O(N+N,)
.sort() ordena la lista O(N log N)

Esta estructura no se usa casi nunca a menos que se requiera insertar
elementos en el medio dada la posicion.

23

Set

Se lo puede pensar como una coleccion ordenada de elementos unicos.

A pesar de su nombre, no soporta eficientemente las operaciones
comunes de conjuntos (uniodn, interseccion, diferencia, etc...).

Al igual que las colas de prioridad, necesitan que exista un orden estricto
definido entre sus elementos (esto no es verdad en matematica).

En un set no puede haber dos elementos equivalentes
(a y b se consideran equivalentes cuando a<b y b<a).

24

Set

#tinclude <set>

set<int> S; // conjunto de ints

S.insert(4);

S.insert(8);

cout << S.size() << endl; // 2

S.insert(8); // no se inserta porque 8 es equivalente a 8

cout << S.size() << endl; // 2 todavia

cout << *S.lower_bound(4) << ’ ’<< *S.upper_bound(4) << endl; // 4 8

25

Set

Algunas sus operaciones son:

.insert(x) inserta x O(log n)
.erase(x) elimina x O(log n)
.count(x) verifica si x esta presente en la estructura O(log n)
.lower_bound(x) retorna un puntero al primer elemento mayor o igual a x O(log n)
.upper_bound(x) retorna un puntero al primer elemento estrict. mayor a x O(log n)

Para iterar el set, podemos obtener punteros bidireccionales con begin() y
end(). Recordemos que el set esta ordenado, asi que el min elemento de S
es *S.begin() y el ultimo es *S.rbegin()

26

Representan diccionarios.

Pueden ser pensados como sets, en los cuales a cada uno de sus
elementos (key) le es asociado un valor (value).

Notemos que los tipos de la claves y los valores no necesariamente deben
coincidir, i.e, podemos asociar numeros a strings.

Son como arrays donde las claves pueden ser cualquier tipo ordenado.

27

Map
Su operacion importante es:

[x] el valor asociado a x (si no existe lo crea) O(log n)

Todas las operaciones de set valen (como si se realizasen sobre las claves)

28

#include <map>

map<int,char> M; // mapeo de int — char

M[5] = *A’; // asociamos 5 con ’A’

cout << M.size() << endl; // 1

if(M[7] !'= ’R’) // creamos sin querer una nuevo par clave - valor !
cout << "ESTO ESTA TAN MAL !" << endl;

cout << M.size() << endl; // 2 (oops !)

if(M.count(4) and M[4] == ’T’) // esto esta bien
cout << "Pregunto si existe, luego si es lo que busco" << endl ;

29

Tablas de hash

Unordered Set

Se lo puede pensar como un set no ordenado.

En lugar de requerir que sus elementos tengan definido operatory,
se requiere que tengan definido hash<T> y operator==.

Esto permite operaciones de busqueda, insercidon y borrado en O(1),

a costa de perder las operaciones que dependen del orden como
lower_bound, upper_bound, etc...

31

Unordered Map

Se lo puede pensar como un map cuyas claves no estan ordenadas.
Unordered map es a map lo que unordered set es a set.

Si conocemos la cantidad de objetos que usaremos podemos aprovechar
para reservar espacio a priori (.reserve, .max_load_factor).

32

