
Redigonda Maximiliano

Complejidades
Asintóticas
Redigonda Maximiliano

1

Redigonda Maximiliano

Complejidades Asintóticas
Para que el juez acepte (AC) nuestro código para un problema, no
sólo necesitaremos correctitud, sino también eficiencia.

Para que nuestro programa sea eficiente, debe utilizar sus recursos
(tiempo, memoria), de una manera razonable.

Los límites de tiempo y memoria están dados para todos los
problemas de la competencia.

2

Redigonda Maximiliano

Complejidades Asintóticas
Nos gustaría responder preguntas como:

● Cuánto tiempo tardará mi programa en el peor caso?
● Cuánta memoria utilizará mi programa en el peor caso?

Tenemos dos opciones:

1. Contar cantidad de operaciones realizadas.
2. Estimar de una forma matemáticamente aceptable.

3

Redigonda Maximiliano

#1 - Contar operaciones
Para problemas extremadamente sencillos, puede funcionar.

Pero:

● No todas las operaciones cuestan lo mismo!
● Si el programa es ligeramente largo puede ser tedioso!
● No se requiere tanta exactitud!
● Nunca sabemos de verdad lo que nuestro compilador hace con

nuestro código.

Por todas estas, la #1 no es la recomendable.
4

Redigonda Maximiliano

#2 - Estimar
Ya que no necesitamos mucha precisión, estimar parece ser una
buena idea.

Medimos el coste de un programa como una función del tamaño de
la entrada, por ejemplo, T(n) = n2 + n log2(n).

Generalmente, la idea es ignorar constantes y términos menos
significativos.

La notación “o grande”, tiene una definición formal.

5

Redigonda Maximiliano

Ejemplos
for(int i = 0; i < n; ++i){

printf(“Hola mundo!\n”);

}

6

Redigonda Maximiliano

Ejemplos
for(int i = 0; i < 5*n; ++i){

printf(“Hola mundo!\n”);

}

7

Redigonda Maximiliano

Ejemplos
for(int i = 0; i < n; i += 5){

printf(“Hola mundo!\n”);

}

8

Redigonda Maximiliano

Ejemplos
for(int i = 0; i < n; ++i){

for(int j = 0; j < m; ++j){

printf(“Hola mundo!\n”);

}

}

9

Redigonda Maximiliano

Ejemplos
for(int i = 0; i*i < n; ++i){

printf(“Hola mundo!\n”);

}

10

Redigonda Maximiliano

Ejemplos
for(int i = 1; i < n; i *= 2){

printf(“Hola mundo!\n”);

}

11

Redigonda Maximiliano

Ejemplos
for(int i = 1; i < n; ++i){

for(int j = 0; j < n; j += i){

printf(“Hola mundo!\n”);

}

}

12

Redigonda Maximiliano

Ejemplos
for(int i = 1; i < n; i *= 2){

 for(int j = 0; j < n; j += i){

printf(“Hola mundo!\n”);

}

}

13

Redigonda Maximiliano

Ejemplos
void f(int n){

 if(n <= 1) return;

 f(n - 1);

 f(n - 1);

}

14

Redigonda Maximiliano

Complejidad Amortizada
Complejidad amortizada es el costo total por operación, evaluado
sobre una secuencia de operaciones.

En un vector, cuando la función push_back excede la capacidad
reservada, duplica el espacio reservado (copiando los valores a una
nueva posición de memoria).

Un push_back puede tomar O(n) en ejecutarse, sin embargo, como
el espacio reservado se duplica, las siguientes n-1 llamadas cuestan
O(1). Es decir, n llamadas, O(n), lo cual es O(1) amortizado.

15

Redigonda Maximiliano

Complejidad Amortizada
Se suele estimar que 1 segundo = c * 108 operaciones “sencillas”.

Hay muchas cosas extra que tenemos que tener en cuenta
(estamos utilizando memoria dinámica? Nuestro algoritmo es
cache-friendly? Es fácilmente optimizable?).

Algunos recursos suelen mostrar una tabla como la que veremos a
continuación.

16

Redigonda Maximiliano

Complejidad Amortizada

17

Complejidad Máximo N

O(1) Infinito

O(log n) 2100000000

O(n) 100000000 (108)

O(n log n) 10000000 (107)

O(n2) 10000 (104)

O(n3) 700

O(n4) 150

O(n2 2n) 20

O(n!) 12

