GComplejidades
Asintoticas

Redigonda Maximiliano

Redigonda Maximiliano 1



Complejidades Asintéticas

Para que el juez acepte (AC) nuestro codigo para un problema, no
sOlo necesitaremos correctitud, sino también eficiencia.

Para que nuestro programa sea eficiente, debe utilizar sus recursos
(tiempo, memoria), de una manera razonable.

Los limites de tiempo y memoria estan dados para todos los
problemas de la competencia.

Redigonda Maximiliano

2



Complejidades Asintéticas

Nos gustaria responder preguntas como:

e Cuanto tiempo tardara mi programa en el peor caso?
e Cuanta memoria utilizara mi programa en el peor caso?

Tenemos dos opciones:

1. Contar cantidad de operaciones realizadas.
2. Estimar de una forma matematicamente aceptable.

Redigonda Maximiliano



#1 - Gontar operaciones

Para problemas extremadamente sencillos, puede funcionar.
Pero:

No todas las operaciones cuestan [o mismo!

Si el programa es ligeramente largo puede ser tedioso!

No se requiere tanta exactitud!

Nunca sabemos de verdad lo que nuestro compilador hace con
nuestro codigo.

Por todas estas, la #1 no es la recomendable.

Redigonda Maximiliano 4



#2 - Estimar

Ya que no necesitamos mucha precision, estimar parece ser una
buena idea.

Medimos el coste de un programa como una funcidén del tamafo de
la entrada, por ejemplo, T(n) = n?+ n log,(n).

Generalmente, la idea es ignorar constantes y términos menos
significativos.

La notacion “o grande”, tiene una definicion formal.

Redigonda Maximiliano

5



Ejemplos

for(int 1 = 0; i < n; ++i){
printf(“Hola mundo!\n”);

Redigonda Maximiliano 6



Ejemplos

for(int 1 = 0; i < 5*n; ++1){
printf(“Hola mundo!\n”);

Redigonda Maximiliano 7



Ejemplos

for(int i = 0; 1 < n; 1 += 5){
printf(“Hola mundo!\n”);

Redigonda Maximiliano 8



Ejemplos

for(int 1 = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
printf(“Hola mundo!\n”);

Redigonda Maximiliano 9



Ejemplos

for(int 1 = @0; i*i < n; ++1){
printf(“Hola mundo!\n”);

Redigonda Maximiliano 10



Ejemplos

for(int 1 = 1; i < n; 1 *= 2){
printf(“Hola mundo!\n”);

Redigonda Maximiliano "



Ejemplos

for(int i = 1; i < n; ++i){
for(int j =0; j < n; j += 1){
printf(“Hola mundo!\n”);

Redigonda Maximiliano 12



Ejemplos

for(int 1 = 1; i < n; i *= 2){
for(int j =0; j < n; j += 1){
printf(“Hola mundo!\n”);

Redigonda Maximiliano 13



Ejemplos

void f(int n){
if(n <= 1) return;
f(n - 1);
f(n - 1);

Redigonda Maximiliano 14



Complejidad Amortizada

Complejidad amortizada es el costo total por operacion, evaluado
sobre una secuencia de operaciones.

En un vector, cuando la funcidon push_back excede la capacidad
reservada, duplica el espacio reservado (copiando los valores a una
nueva posicion de memoria).

Un push_back puede tomar O(n) en ejecutarse, sin embargo, como
el espacio reservado se duplica, las siguientes n-1llamadas cuestan
O(1). Es decir, n llamadas, O(n), lo cual es O(1) amortizado.

Redigonda Maximiliano

15



Complejidad Amortizada

Se suele estimar que 1 segundo = ¢ * 108 operaciones “sencillas”.

Hay muchas cosas extra que tenemos que tener en cuenta
(estamos utilizando memoria dinamica? Nuestro algoritmo es
cache-friendly? Es facilmente optimizable?).

Algunos recursos suelen mostrar una tabla como la que veremos a
continuacion.

Redigonda Maximiliano

16



Complejidad Amortizada

Complejidad Maximo N

Oo(1) Infinito

O(lOg n) 2100000000

O(n) 100000000 (108)

O(nlog n) 10000000 (107)

O(n?) 10000 (10%)

O(n°) 700

O(n?) 150

O(n?2") 20

O(nh) 12 Redigonda Maximiliar

o)

17



