summaryrefslogtreecommitdiff
path: root/notes.c
blob: 08a369af82063aab1866e25fb466c022fde761f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
#include "cache.h"
#include "notes.h"
#include "tree.h"
#include "utf8.h"
#include "strbuf.h"
#include "tree-walk.h"
 
/*
 * Use a non-balancing simple 16-tree structure with struct int_node as
 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
 * 16-array of pointers to its children.
 * The bottom 2 bits of each pointer is used to identify the pointer type
 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
 *
 * The root node is a statically allocated struct int_node.
 */
struct int_node {
	void *a[16];
};
 
/*
 * Leaf nodes come in two variants, note entries and subtree entries,
 * distinguished by the LSb of the leaf node pointer (see above).
 * As a note entry, the key is the SHA1 of the referenced object, and the
 * value is the SHA1 of the note object.
 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
 * referenced object, using the last byte of the key to store the length of
 * the prefix. The value is the SHA1 of the tree object containing the notes
 * subtree.
 */
struct leaf_node {
	unsigned char key_sha1[20];
	unsigned char val_sha1[20];
};
 
#define PTR_TYPE_NULL     0
#define PTR_TYPE_INTERNAL 1
#define PTR_TYPE_NOTE     2
#define PTR_TYPE_SUBTREE  3
 
#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
 
#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
 
#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
	(memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
 
struct notes_tree default_notes_tree;
 
static void load_subtree(struct leaf_node *subtree, struct int_node *node,
		unsigned int n);
 
/*
 * Search the tree until the appropriate location for the given key is found:
 * 1. Start at the root node, with n = 0
 * 2. If a[0] at the current level is a matching subtree entry, unpack that
 *    subtree entry and remove it; restart search at the current level.
 * 3. Use the nth nibble of the key as an index into a:
 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
 *      restart search at the current level.
 *    - Otherwise, we have found one of the following:
 *      - a subtree entry which does not match the key
 *      - a note entry which may or may not match the key
 *      - an unused leaf node (NULL)
 *      In any case, set *tree and *n, and return pointer to the tree location.
 */
static void **note_tree_search(struct int_node **tree,
		unsigned char *n, const unsigned char *key_sha1)
{
	struct leaf_node *l;
	unsigned char i;
	void *p = (*tree)->a[0];
 
	if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
		l = (struct leaf_node *) CLR_PTR_TYPE(p);
		if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
			/* unpack tree and resume search */
			(*tree)->a[0] = NULL;
			load_subtree(l, *tree, *n);
			free(l);
			return note_tree_search(tree, n, key_sha1);
		}
	}
 
	i = GET_NIBBLE(*n, key_sha1);
	p = (*tree)->a[i];
	switch (GET_PTR_TYPE(p)) {
	case PTR_TYPE_INTERNAL:
		*tree = CLR_PTR_TYPE(p);
		(*n)++;
		return note_tree_search(tree, n, key_sha1);
	case PTR_TYPE_SUBTREE:
		l = (struct leaf_node *) CLR_PTR_TYPE(p);
		if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
			/* unpack tree and resume search */
			(*tree)->a[i] = NULL;
			load_subtree(l, *tree, *n);
			free(l);
			return note_tree_search(tree, n, key_sha1);
		}
		/* fall through */
	default:
		return &((*tree)->a[i]);
	}
}
 
/*
 * To find a leaf_node:
 * Search to the tree location appropriate for the given key:
 * If a note entry with matching key, return the note entry, else return NULL.
 */
static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
		const unsigned char *key_sha1)
{
	void **p = note_tree_search(&tree, &n, key_sha1);
	if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
		struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
		if (!hashcmp(key_sha1, l->key_sha1))
			return l;
	}
	return NULL;
}
 
/* Create a new blob object by concatenating the two given blob objects */
static int concatenate_notes(unsigned char *cur_sha1,
		const unsigned char *new_sha1)
{
	char *cur_msg, *new_msg, *buf;
	unsigned long cur_len, new_len, buf_len;
	enum object_type cur_type, new_type;
	int ret;
 
	/* read in both note blob objects */
	new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
	if (!new_msg || !new_len || new_type != OBJ_BLOB) {
		free(new_msg);
		return 0;
	}
	cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
	if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
		free(cur_msg);
		free(new_msg);
		hashcpy(cur_sha1, new_sha1);
		return 0;
	}
 
	/* we will separate the notes by a newline anyway */
	if (cur_msg[cur_len - 1] == '\n')
		cur_len--;
 
	/* concatenate cur_msg and new_msg into buf */
	buf_len = cur_len + 1 + new_len;
	buf = (char *) xmalloc(buf_len);
	memcpy(buf, cur_msg, cur_len);
	buf[cur_len] = '\n';
	memcpy(buf + cur_len + 1, new_msg, new_len);
 
	free(cur_msg);
	free(new_msg);
 
	/* create a new blob object from buf */
	ret = write_sha1_file(buf, buf_len, "blob", cur_sha1);
	free(buf);
	return ret;
}
 
/*
 * To insert a leaf_node:
 * Search to the tree location appropriate for the given leaf_node's key:
 * - If location is unused (NULL), store the tweaked pointer directly there
 * - If location holds a note entry that matches the note-to-be-inserted, then
 *   concatenate the two notes.
 * - If location holds a note entry that matches the subtree-to-be-inserted,
 *   then unpack the subtree-to-be-inserted into the location.
 * - If location holds a matching subtree entry, unpack the subtree at that
 *   location, and restart the insert operation from that level.
 * - Else, create a new int_node, holding both the node-at-location and the
 *   node-to-be-inserted, and store the new int_node into the location.
 */
static void note_tree_insert(struct int_node *tree, unsigned char n,
		struct leaf_node *entry, unsigned char type)
{
	struct int_node *new_node;
	struct leaf_node *l;
	void **p = note_tree_search(&tree, &n, entry->key_sha1);
 
	assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
	l = (struct leaf_node *) CLR_PTR_TYPE(*p);
	switch (GET_PTR_TYPE(*p)) {
	case PTR_TYPE_NULL:
		assert(!*p);
		*p = SET_PTR_TYPE(entry, type);
		return;
	case PTR_TYPE_NOTE:
		switch (type) {
		case PTR_TYPE_NOTE:
			if (!hashcmp(l->key_sha1, entry->key_sha1)) {
				/* skip concatenation if l == entry */
				if (!hashcmp(l->val_sha1, entry->val_sha1))
					return;
 
				if (concatenate_notes(l->val_sha1,
						entry->val_sha1))
					die("failed to concatenate note %s "
					    "into note %s for object %s",
					    sha1_to_hex(entry->val_sha1),
					    sha1_to_hex(l->val_sha1),
					    sha1_to_hex(l->key_sha1));
				free(entry);
				return;
			}
			break;
		case PTR_TYPE_SUBTREE:
			if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
						    entry->key_sha1)) {
				/* unpack 'entry' */
				load_subtree(entry, tree, n);
				free(entry);
				return;
			}
			break;
		}
		break;
	case PTR_TYPE_SUBTREE:
		if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
			/* unpack 'l' and restart insert */
			*p = NULL;
			load_subtree(l, tree, n);
			free(l);
			note_tree_insert(tree, n, entry, type);
			return;
		}
		break;
	}
 
	/* non-matching leaf_node */
	assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
	       GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
	new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
	note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p));
	*p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
	note_tree_insert(new_node, n + 1, entry, type);
}
 
/*
 * How to consolidate an int_node:
 * If there are > 1 non-NULL entries, give up and return non-zero.
 * Otherwise replace the int_node at the given index in the given parent node
 * with the only entry (or a NULL entry if no entries) from the given tree,
 * and return 0.
 */
static int note_tree_consolidate(struct int_node *tree,
	struct int_node *parent, unsigned char index)
{
	unsigned int i;
	void *p = NULL;
 
	assert(tree && parent);
	assert(CLR_PTR_TYPE(parent->a[index]) == tree);
 
	for (i = 0; i < 16; i++) {
		if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
			if (p) /* more than one entry */
				return -2;
			p = tree->a[i];
		}
	}
 
	/* replace tree with p in parent[index] */
	parent->a[index] = p;
	free(tree);
	return 0;
}
 
/*
 * To remove a leaf_node:
 * Search to the tree location appropriate for the given leaf_node's key:
 * - If location does not hold a matching entry, abort and do nothing.
 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
 */
static void note_tree_remove(struct notes_tree *t, struct int_node *tree,
		unsigned char n, struct leaf_node *entry)
{
	struct leaf_node *l;
	struct int_node *parent_stack[20];
	unsigned char i, j;
	void **p = note_tree_search(&tree, &n, entry->key_sha1);
 
	assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
	if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
		return; /* type mismatch, nothing to remove */
	l = (struct leaf_node *) CLR_PTR_TYPE(*p);
	if (hashcmp(l->key_sha1, entry->key_sha1))
		return; /* key mismatch, nothing to remove */
 
	/* we have found a matching entry */
	free(l);
	*p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
 
	/* consolidate this tree level, and parent levels, if possible */
	if (!n)
		return; /* cannot consolidate top level */
	/* first, build stack of ancestors between root and current node */
	parent_stack[0] = t->root;
	for (i = 0; i < n; i++) {
		j = GET_NIBBLE(i, entry->key_sha1);
		parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
	}
	assert(i == n && parent_stack[i] == tree);
	/* next, unwind stack until note_tree_consolidate() is done */
	while (i > 0 &&
	       !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
				      GET_NIBBLE(i - 1, entry->key_sha1)))
		i--;
}
 
/* Free the entire notes data contained in the given tree */
static void note_tree_free(struct int_node *tree)
{
	unsigned int i;
	for (i = 0; i < 16; i++) {
		void *p = tree->a[i];
		switch (GET_PTR_TYPE(p)) {
		case PTR_TYPE_INTERNAL:
			note_tree_free(CLR_PTR_TYPE(p));
			/* fall through */
		case PTR_TYPE_NOTE:
		case PTR_TYPE_SUBTREE:
			free(CLR_PTR_TYPE(p));
		}
	}
}
 
/*
 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 * - hex      - Partial SHA1 segment in ASCII hex format
 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 * - sha1     - Partial SHA1 value is written here
 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 * Pads sha1 with NULs up to sha1_len (not included in returned length).
 */
static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
		unsigned char *sha1, unsigned int sha1_len)
{
	unsigned int i, len = hex_len >> 1;
	if (hex_len % 2 != 0 || len > sha1_len)
		return -1;
	for (i = 0; i < len; i++) {
		unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
		if (val & ~0xff)
			return -1;
		*sha1++ = val;
		hex += 2;
	}
	for (; i < sha1_len; i++)
		*sha1++ = 0;
	return len;
}
 
static void load_subtree(struct leaf_node *subtree, struct int_node *node,
		unsigned int n)
{
	unsigned char object_sha1[20];
	unsigned int prefix_len;
	void *buf;
	struct tree_desc desc;
	struct name_entry entry;
 
	buf = fill_tree_descriptor(&desc, subtree->val_sha1);
	if (!buf)
		die("Could not read %s for notes-index",
		     sha1_to_hex(subtree->val_sha1));
 
	prefix_len = subtree->key_sha1[19];
	assert(prefix_len * 2 >= n);
	memcpy(object_sha1, subtree->key_sha1, prefix_len);
	while (tree_entry(&desc, &entry)) {
		int len = get_sha1_hex_segment(entry.path, strlen(entry.path),
				object_sha1 + prefix_len, 20 - prefix_len);
		if (len < 0)
			continue; /* entry.path is not a SHA1 sum. Skip */
		len += prefix_len;
 
		/*
		 * If object SHA1 is complete (len == 20), assume note object
		 * If object SHA1 is incomplete (len < 20), assume note subtree
		 */
		if (len <= 20) {
			unsigned char type = PTR_TYPE_NOTE;
			struct leaf_node *l = (struct leaf_node *)
				xcalloc(sizeof(struct leaf_node), 1);
			hashcpy(l->key_sha1, object_sha1);
			hashcpy(l->val_sha1, entry.sha1);
			if (len < 20) {
				if (!S_ISDIR(entry.mode))
					continue; /* entry cannot be subtree */
				l->key_sha1[19] = (unsigned char) len;
				type = PTR_TYPE_SUBTREE;
			}
			note_tree_insert(node, n, l, type);
		}
	}
	free(buf);
}
 
/*
 * Determine optimal on-disk fanout for this part of the notes tree
 *
 * Given a (sub)tree and the level in the internal tree structure, determine
 * whether or not the given existing fanout should be expanded for this
 * (sub)tree.
 *
 * Values of the 'fanout' variable:
 * - 0: No fanout (all notes are stored directly in the root notes tree)
 * - 1: 2/38 fanout
 * - 2: 2/2/36 fanout
 * - 3: 2/2/2/34 fanout
 * etc.
 */
static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
		unsigned char fanout)
{
	/*
	 * The following is a simple heuristic that works well in practice:
	 * For each even-numbered 16-tree level (remember that each on-disk
	 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
	 * entries at that tree level. If all of them are either int_nodes or
	 * subtree entries, then there are likely plenty of notes below this
	 * level, so we return an incremented fanout.
	 */
	unsigned int i;
	if ((n % 2) || (n > 2 * fanout))
		return fanout;
	for (i = 0; i < 16; i++) {
		switch (GET_PTR_TYPE(tree->a[i])) {
		case PTR_TYPE_SUBTREE:
		case PTR_TYPE_INTERNAL:
			continue;
		default:
			return fanout;
		}
	}
	return fanout + 1;
}
 
static void construct_path_with_fanout(const unsigned char *sha1,
		unsigned char fanout, char *path)
{
	unsigned int i = 0, j = 0;
	const char *hex_sha1 = sha1_to_hex(sha1);
	assert(fanout < 20);
	while (fanout) {
		path[i++] = hex_sha1[j++];
		path[i++] = hex_sha1[j++];
		path[i++] = '/';
		fanout--;
	}
	strcpy(path + i, hex_sha1 + j);
}
 
static int for_each_note_helper(struct int_node *tree, unsigned char n,
		unsigned char fanout, int flags, each_note_fn fn,
		void *cb_data)
{
	unsigned int i;
	void *p;
	int ret = 0;
	struct leaf_node *l;
	static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */
 
	fanout = determine_fanout(tree, n, fanout);
	for (i = 0; i < 16; i++) {
redo:
		p = tree->a[i];
		switch (GET_PTR_TYPE(p)) {
		case PTR_TYPE_INTERNAL:
			/* recurse into int_node */
			ret = for_each_note_helper(CLR_PTR_TYPE(p), n + 1,
				fanout, flags, fn, cb_data);
			break;
		case PTR_TYPE_SUBTREE:
			l = (struct leaf_node *) CLR_PTR_TYPE(p);
			/*
			 * Subtree entries in the note tree represent parts of
			 * the note tree that have not yet been explored. There
			 * is a direct relationship between subtree entries at
			 * level 'n' in the tree, and the 'fanout' variable:
			 * Subtree entries at level 'n <= 2 * fanout' should be
			 * preserved, since they correspond exactly to a fanout
			 * directory in the on-disk structure. However, subtree
			 * entries at level 'n > 2 * fanout' should NOT be
			 * preserved, but rather consolidated into the above
			 * notes tree level. We achieve this by unconditionally
			 * unpacking subtree entries that exist below the
			 * threshold level at 'n = 2 * fanout'.
			 */
			if (n <= 2 * fanout &&
			    flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
				/* invoke callback with subtree */
				unsigned int path_len =
					l->key_sha1[19] * 2 + fanout;
				assert(path_len < 40 + 19);
				construct_path_with_fanout(l->key_sha1, fanout,
							   path);
				/* Create trailing slash, if needed */
				if (path[path_len - 1] != '/')
					path[path_len++] = '/';
				path[path_len] = '\0';
				ret = fn(l->key_sha1, l->val_sha1, path,
					 cb_data);
			}
			if (n > fanout * 2 ||
			    !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
				/* unpack subtree and resume traversal */
				tree->a[i] = NULL;
				load_subtree(l, tree, n);
				free(l);
				goto redo;
			}
			break;
		case PTR_TYPE_NOTE:
			l = (struct leaf_node *) CLR_PTR_TYPE(p);
			construct_path_with_fanout(l->key_sha1, fanout, path);
			ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
			break;
		}
		if (ret)
			return ret;
	}
	return 0;
}
 
struct tree_write_stack {
	struct tree_write_stack *next;
	struct strbuf buf;
	char path[2]; /* path to subtree in next, if any */
};
 
static inline int matches_tree_write_stack(struct tree_write_stack *tws,
		const char *full_path)
{
	return  full_path[0] == tws->path[0] &&
		full_path[1] == tws->path[1] &&
		full_path[2] == '/';
}
 
static void write_tree_entry(struct strbuf *buf, unsigned int mode,
		const char *path, unsigned int path_len, const
		unsigned char *sha1)
{
		strbuf_addf(buf, "%06o %.*s%c", mode, path_len, path, '\0');
		strbuf_add(buf, sha1, 20);
}
 
static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
		const char *path)
{
	struct tree_write_stack *n;
	assert(!tws->next);
	assert(tws->path[0] == '\0' && tws->path[1] == '\0');
	n = (struct tree_write_stack *)
		xmalloc(sizeof(struct tree_write_stack));
	n->next = NULL;
	strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
	n->path[0] = n->path[1] = '\0';
	tws->next = n;
	tws->path[0] = path[0];
	tws->path[1] = path[1];
}
 
static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
{
	int ret;
	struct tree_write_stack *n = tws->next;
	unsigned char s[20];
	if (n) {
		ret = tree_write_stack_finish_subtree(n);
		if (ret)
			return ret;
		ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
		if (ret)
			return ret;
		strbuf_release(&n->buf);
		free(n);
		tws->next = NULL;
		write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
		tws->path[0] = tws->path[1] = '\0';
	}
	return 0;
}
 
static int write_each_note_helper(struct tree_write_stack *tws,
		const char *path, unsigned int mode,
		const unsigned char *sha1)
{
	size_t path_len = strlen(path);
	unsigned int n = 0;
	int ret;
 
	/* Determine common part of tree write stack */
	while (tws && 3 * n < path_len &&
	       matches_tree_write_stack(tws, path + 3 * n)) {
		n++;
		tws = tws->next;
	}
 
	/* tws point to last matching tree_write_stack entry */
	ret = tree_write_stack_finish_subtree(tws);
	if (ret)
		return ret;
 
	/* Start subtrees needed to satisfy path */
	while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
		tree_write_stack_init_subtree(tws, path + 3 * n);
		n++;
		tws = tws->next;
	}
 
	/* There should be no more directory components in the given path */
	assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
 
	/* Finally add given entry to the current tree object */
	write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
			 sha1);
 
	return 0;
}
 
struct write_each_note_data {
	struct tree_write_stack *root;
};
 
static int write_each_note(const unsigned char *object_sha1,
		const unsigned char *note_sha1, char *note_path,
		void *cb_data)
{
	struct write_each_note_data *d =
		(struct write_each_note_data *) cb_data;
	size_t note_path_len = strlen(note_path);
	unsigned int mode = 0100644;
 
	if (note_path[note_path_len - 1] == '/') {
		/* subtree entry */
		note_path_len--;
		note_path[note_path_len] = '\0';
		mode = 040000;
	}
	assert(note_path_len <= 40 + 19);
 
	return write_each_note_helper(d->root, note_path, mode, note_sha1);
}
 
void init_notes(struct notes_tree *t, const char *notes_ref, int flags)
{
	unsigned char sha1[20], object_sha1[20];
	unsigned mode;
	struct leaf_node root_tree;
 
	if (!t)
		t = &default_notes_tree;
	assert(!t->initialized);
 
	if (!notes_ref)
		notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
	if (!notes_ref)
		notes_ref = notes_ref_name; /* value of core.notesRef config */
	if (!notes_ref)
		notes_ref = GIT_NOTES_DEFAULT_REF;
 
	t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
	t->ref = notes_ref ? xstrdup(notes_ref) : NULL;
	t->initialized = 1;
 
	if (flags & NOTES_INIT_EMPTY || !notes_ref ||
	    read_ref(notes_ref, object_sha1))
		return;
	if (get_tree_entry(object_sha1, "", sha1, &mode))
		die("Failed to read notes tree referenced by %s (%s)",
		    notes_ref, object_sha1);
 
	hashclr(root_tree.key_sha1);
	hashcpy(root_tree.val_sha1, sha1);
	load_subtree(&root_tree, t->root, 0);
}
 
void add_note(struct notes_tree *t, const unsigned char *object_sha1,
		const unsigned char *note_sha1)
{
	struct leaf_node *l;
 
	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
	l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
	hashcpy(l->key_sha1, object_sha1);
	hashcpy(l->val_sha1, note_sha1);
	note_tree_insert(t->root, 0, l, PTR_TYPE_NOTE);
}
 
void remove_note(struct notes_tree *t, const unsigned char *object_sha1)
{
	struct leaf_node l;
 
	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
	hashcpy(l.key_sha1, object_sha1);
	hashclr(l.val_sha1);
	return note_tree_remove(t, t->root, 0, &l);
}
 
const unsigned char *get_note(struct notes_tree *t,
		const unsigned char *object_sha1)
{
	struct leaf_node *found;
 
	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
	found = note_tree_find(t->root, 0, object_sha1);
	return found ? found->val_sha1 : NULL;
}
 
int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
		void *cb_data)
{
	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
	return for_each_note_helper(t->root, 0, 0, flags, fn, cb_data);
}
 
int write_notes_tree(struct notes_tree *t, unsigned char *result)
{
	struct tree_write_stack root;
	struct write_each_note_data cb_data;
	int ret;
 
	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
 
	/* Prepare for traversal of current notes tree */
	root.next = NULL; /* last forward entry in list is grounded */
	strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
	root.path[0] = root.path[1] = '\0';
	cb_data.root = &root;
 
	/* Write tree objects representing current notes tree */
	ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
				FOR_EACH_NOTE_YIELD_SUBTREES,
			write_each_note, &cb_data) ||
		tree_write_stack_finish_subtree(&root) ||
		write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
	strbuf_release(&root.buf);
	return ret;
}
 
void free_notes(struct notes_tree *t)
{
	if (!t)
		t = &default_notes_tree;
	if (t->root)
		note_tree_free(t->root);
	free(t->root);
	free(t->ref);
	memset(t, 0, sizeof(struct notes_tree));
}
 
void format_note(struct notes_tree *t, const unsigned char *object_sha1,
		struct strbuf *sb, const char *output_encoding, int flags)
{
	static const char utf8[] = "utf-8";
	const unsigned char *sha1;
	char *msg, *msg_p;
	unsigned long linelen, msglen;
	enum object_type type;
 
	if (!t)
		t = &default_notes_tree;
	if (!t->initialized)
		init_notes(t, NULL, 0);
 
	sha1 = get_note(t, object_sha1);
	if (!sha1)
		return;
 
	if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
			type != OBJ_BLOB) {
		free(msg);
		return;
	}
 
	if (output_encoding && *output_encoding &&
			strcmp(utf8, output_encoding)) {
		char *reencoded = reencode_string(msg, output_encoding, utf8);
		if (reencoded) {
			free(msg);
			msg = reencoded;
			msglen = strlen(msg);
		}
	}
 
	/* we will end the annotation by a newline anyway */
	if (msglen && msg[msglen - 1] == '\n')
		msglen--;
 
	if (flags & NOTES_SHOW_HEADER)
		strbuf_addstr(sb, "\nNotes:\n");
 
	for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
		linelen = strchrnul(msg_p, '\n') - msg_p;
 
		if (flags & NOTES_INDENT)
			strbuf_addstr(sb, "    ");
		strbuf_add(sb, msg_p, linelen);
		strbuf_addch(sb, '\n');
	}
 
	free(msg);
}