#define NO_THE_INDEX_COMPATIBILITY_MACROS #include "cache.h" #include "dir.h" #include "tree.h" #include "tree-walk.h" #include "cache-tree.h" #include "unpack-trees.h" #include "progress.h" #include "refs.h" #include "attr.h" /* * Error messages expected by scripts out of plumbing commands such as * read-tree. Non-scripted Porcelain is not required to use these messages * and in fact are encouraged to reword them to better suit their particular * situation better. See how "git checkout" replaces not_uptodate_file to * explain why it does not allow switching between branches when you have * local changes, for example. */ static struct unpack_trees_error_msgs unpack_plumbing_errors = { /* would_overwrite */ "Entry '%s' would be overwritten by merge. Cannot merge.", /* not_uptodate_file */ "Entry '%s' not uptodate. Cannot merge.", /* not_uptodate_dir */ "Updating '%s' would lose untracked files in it", /* would_lose_untracked */ "Untracked working tree file '%s' would be %s by merge.", /* bind_overlap */ "Entry '%s' overlaps with '%s'. Cannot bind.", }; #define ERRORMSG(o,fld) \ ( ((o) && (o)->msgs.fld) \ ? ((o)->msgs.fld) \ : (unpack_plumbing_errors.fld) ) static void add_entry(struct unpack_trees_options *o, struct cache_entry *ce, unsigned int set, unsigned int clear) { unsigned int size = ce_size(ce); struct cache_entry *new = xmalloc(size); clear |= CE_HASHED | CE_UNHASHED; memcpy(new, ce, size); new->next = NULL; new->ce_flags = (new->ce_flags & ~clear) | set; add_index_entry(&o->result, new, ADD_CACHE_OK_TO_ADD|ADD_CACHE_OK_TO_REPLACE); } /* * Unlink the last component and schedule the leading directories for * removal, such that empty directories get removed. */ static void unlink_entry(struct cache_entry *ce) { if (has_symlink_or_noent_leading_path(ce->name, ce_namelen(ce))) return; if (unlink_or_warn(ce->name)) return; schedule_dir_for_removal(ce->name, ce_namelen(ce)); } static struct checkout state; static int check_updates(struct unpack_trees_options *o) { unsigned cnt = 0, total = 0; struct progress *progress = NULL; struct index_state *index = &o->result; int i; int errs = 0; if (o->update && o->verbose_update) { for (total = cnt = 0; cnt < index->cache_nr; cnt++) { struct cache_entry *ce = index->cache[cnt]; if (ce->ce_flags & (CE_UPDATE | CE_REMOVE)) total++; } progress = start_progress_delay("Checking out files", total, 50, 1); cnt = 0; } if (o->update) git_attr_set_direction(GIT_ATTR_CHECKOUT, &o->result); for (i = 0; i < index->cache_nr; i++) { struct cache_entry *ce = index->cache[i]; if (ce->ce_flags & CE_REMOVE) { display_progress(progress, ++cnt); if (o->update) unlink_entry(ce); } } remove_marked_cache_entries(&o->result); remove_scheduled_dirs(); for (i = 0; i < index->cache_nr; i++) { struct cache_entry *ce = index->cache[i]; if (ce->ce_flags & CE_UPDATE) { display_progress(progress, ++cnt); ce->ce_flags &= ~CE_UPDATE; if (o->update) { errs |= checkout_entry(ce, &state, NULL); } } } stop_progress(&progress); if (o->update) git_attr_set_direction(GIT_ATTR_CHECKIN, NULL); return errs != 0; } static inline int call_unpack_fn(struct cache_entry **src, struct unpack_trees_options *o) { int ret = o->fn(src, o); if (ret > 0) ret = 0; return ret; } static int unpack_index_entry(struct cache_entry *ce, struct unpack_trees_options *o) { struct cache_entry *src[5] = { ce, }; o->pos++; if (ce_stage(ce)) { if (o->skip_unmerged) { add_entry(o, ce, 0, 0); return 0; } } return call_unpack_fn(src, o); } int traverse_trees_recursive(int n, unsigned long dirmask, unsigned long df_conflicts, struct name_entry *names, struct traverse_info *info) { int i; struct tree_desc t[MAX_UNPACK_TREES]; struct traverse_info newinfo; struct name_entry *p; p = names; while (!p->mode) p++; newinfo = *info; newinfo.prev = info; newinfo.name = *p; newinfo.pathlen += tree_entry_len(p->path, p->sha1) + 1; newinfo.conflicts |= df_conflicts; for (i = 0; i < n; i++, dirmask >>= 1) { const unsigned char *sha1 = NULL; if (dirmask & 1) sha1 = names[i].sha1; fill_tree_descriptor(t+i, sha1); } return traverse_trees(n, t, &newinfo); } /* * Compare the traverse-path to the cache entry without actually * having to generate the textual representation of the traverse * path. * * NOTE! This *only* compares up to the size of the traverse path * itself - the caller needs to do the final check for the cache * entry having more data at the end! */ static int do_compare_entry(const struct cache_entry *ce, const struct traverse_info *info, const struct name_entry *n) { int len, pathlen, ce_len; const char *ce_name; if (info->prev) { int cmp = do_compare_entry(ce, info->prev, &info->name); if (cmp) return cmp; } pathlen = info->pathlen; ce_len = ce_namelen(ce); /* If ce_len < pathlen then we must have previously hit "name == directory" entry */ if (ce_len < pathlen) return -1; ce_len -= pathlen; ce_name = ce->name + pathlen; len = tree_entry_len(n->path, n->sha1); return df_name_compare(ce_name, ce_len, S_IFREG, n->path, len, n->mode); } static int compare_entry(const struct cache_entry *ce, const struct traverse_info *info, const struct name_entry *n) { int cmp = do_compare_entry(ce, info, n); if (cmp) return cmp; /* * Even if the beginning compared identically, the ce should * compare as bigger than a directory leading up to it! */ return ce_namelen(ce) > traverse_path_len(info, n); } static struct cache_entry *create_ce_entry(const struct traverse_info *info, const struct name_entry *n, int stage) { int len = traverse_path_len(info, n); struct cache_entry *ce = xcalloc(1, cache_entry_size(len)); ce->ce_mode = create_ce_mode(n->mode); ce->ce_flags = create_ce_flags(len, stage); hashcpy(ce->sha1, n->sha1); make_traverse_path(ce->name, info, n); return ce; } static int unpack_nondirectories(int n, unsigned long mask, unsigned long dirmask, struct cache_entry **src, const struct name_entry *names, const struct traverse_info *info) { int i; struct unpack_trees_options *o = info->data; unsigned long conflicts; /* Do we have *only* directories? Nothing to do */ if (mask == dirmask && !src[0]) return 0; conflicts = info->conflicts; if (o->merge) conflicts >>= 1; conflicts |= dirmask; /* * Ok, we've filled in up to any potential index entry in src[0], * now do the rest. */ for (i = 0; i < n; i++) { int stage; unsigned int bit = 1ul << i; if (conflicts & bit) { src[i + o->merge] = o->df_conflict_entry; continue; } if (!(mask & bit)) continue; if (!o->merge) stage = 0; else if (i + 1 < o->head_idx) stage = 1; else if (i + 1 > o->head_idx) stage = 3; else stage = 2; src[i + o->merge] = create_ce_entry(info, names + i, stage); } if (o->merge) return call_unpack_fn(src, o); for (i = 0; i < n; i++) if (src[i] && src[i] != o->df_conflict_entry) add_entry(o, src[i], 0, 0); return 0; } static int unpack_callback(int n, unsigned long mask, unsigned long dirmask, struct name_entry *names, struct traverse_info *info) { struct cache_entry *src[MAX_UNPACK_TREES + 1] = { NULL, }; struct unpack_trees_options *o = info->data; const struct name_entry *p = names; /* Find first entry with a real name (we could use "mask" too) */ while (!p->mode) p++; /* Are we supposed to look at the index too? */ if (o->merge) { while (o->pos < o->src_index->cache_nr) { struct cache_entry *ce = o->src_index->cache[o->pos]; int cmp = compare_entry(ce, info, p); if (cmp < 0) { if (unpack_index_entry(ce, o) < 0) return -1; continue; } if (!cmp) { o->pos++; if (ce_stage(ce)) { /* * If we skip unmerged index entries, we'll skip this * entry *and* the tree entries associated with it! */ if (o->skip_unmerged) { add_entry(o, ce, 0, 0); return mask; } } src[0] = ce; } break; } } if (unpack_nondirectories(n, mask, dirmask, src, names, info) < 0) return -1; /* Now handle any directories.. */ if (dirmask) { unsigned long conflicts = mask & ~dirmask; if (o->merge) { conflicts <<= 1; if (src[0]) conflicts |= 1; } if (traverse_trees_recursive(n, dirmask, conflicts, names, info) < 0) return -1; return mask; } return mask; } static int unpack_failed(struct unpack_trees_options *o, const char *message) { discard_index(&o->result); if (!o->gently) { if (message) return error("%s", message); return -1; } return -1; } /* * N-way merge "len" trees. Returns 0 on success, -1 on failure to manipulate the * resulting index, -2 on failure to reflect the changes to the work tree. */ int unpack_trees(unsigned len, struct tree_desc *t, struct unpack_trees_options *o) { int ret; static struct cache_entry *dfc; if (len > MAX_UNPACK_TREES) die("unpack_trees takes at most %d trees", MAX_UNPACK_TREES); memset(&state, 0, sizeof(state)); state.base_dir = ""; state.force = 1; state.quiet = 1; state.refresh_cache = 1; memset(&o->result, 0, sizeof(o->result)); o->result.initialized = 1; if (o->src_index) { o->result.timestamp.sec = o->src_index->timestamp.sec; o->result.timestamp.nsec = o->src_index->timestamp.nsec; } o->merge_size = len; if (!dfc) dfc = xcalloc(1, cache_entry_size(0)); o->df_conflict_entry = dfc; if (len) { const char *prefix = o->prefix ? o->prefix : ""; struct traverse_info info; setup_traverse_info(&info, prefix); info.fn = unpack_callback; info.data = o; if (traverse_trees(len, t, &info) < 0) return unpack_failed(o, NULL); } /* Any left-over entries in the index? */ if (o->merge) { while (o->pos < o->src_index->cache_nr) { struct cache_entry *ce = o->src_index->cache[o->pos]; if (unpack_index_entry(ce, o) < 0) return unpack_failed(o, NULL); } } if (o->trivial_merges_only && o->nontrivial_merge) return unpack_failed(o, "Merge requires file-level merging"); o->src_index = NULL; ret = check_updates(o) ? (-2) : 0; if (o->dst_index) *o->dst_index = o->result; return ret; } /* Here come the merge functions */ static int reject_merge(struct cache_entry *ce, struct unpack_trees_options *o) { return error(ERRORMSG(o, would_overwrite), ce->name); } static int same(struct cache_entry *a, struct cache_entry *b) { if (!!a != !!b) return 0; if (!a && !b) return 1; return a->ce_mode == b->ce_mode && !hashcmp(a->sha1, b->sha1); } /* * When a CE gets turned into an unmerged entry, we * want it to be up-to-date */ static int verify_uptodate(struct cache_entry *ce, struct unpack_trees_options *o) { struct stat st; if (o->index_only || o->reset || ce_uptodate(ce)) return 0; if (!lstat(ce->name, &st)) { unsigned changed = ie_match_stat(o->src_index, ce, &st, CE_MATCH_IGNORE_VALID); if (!changed) return 0; /* * NEEDSWORK: the current default policy is to allow * submodule to be out of sync wrt the supermodule * index. This needs to be tightened later for * submodules that are marked to be automatically * checked out. */ if (S_ISGITLINK(ce->ce_mode)) return 0; errno = 0; } if (errno == ENOENT) return 0; return o->gently ? -1 : error(ERRORMSG(o, not_uptodate_file), ce->name); } static void invalidate_ce_path(struct cache_entry *ce, struct unpack_trees_options *o) { if (ce) cache_tree_invalidate_path(o->src_index->cache_tree, ce->name); } /* * Check that checking out ce->sha1 in subdir ce->name is not * going to overwrite any working files. * * Currently, git does not checkout subprojects during a superproject * checkout, so it is not going to overwrite anything. */ static int verify_clean_submodule(struct cache_entry *ce, const char *action, struct unpack_trees_options *o) { return 0; } static int verify_clean_subdirectory(struct cache_entry *ce, const char *action, struct unpack_trees_options *o) { /* * we are about to extract "ce->name"; we would not want to lose * anything in the existing directory there. */ int namelen; int i; struct dir_struct d; char *pathbuf; int cnt = 0; unsigned char sha1[20]; if (S_ISGITLINK(ce->ce_mode) && resolve_gitlink_ref(ce->name, "HEAD", sha1) == 0) { /* If we are not going to update the submodule, then * we don't care. */ if (!hashcmp(sha1, ce->sha1)) return 0; return verify_clean_submodule(ce, action, o); } /* * First let's make sure we do not have a local modification * in that directory. */ namelen = strlen(ce->name); for (i = o->pos; i < o->src_index->cache_nr; i++) { struct cache_entry *ce2 = o->src_index->cache[i]; int len = ce_namelen(ce2); if (len < namelen || strncmp(ce->name, ce2->name, namelen) || ce2->name[namelen] != '/') break; /* * ce2->name is an entry in the subdirectory. */ if (!ce_stage(ce2)) { if (verify_uptodate(ce2, o)) return -1; add_entry(o, ce2, CE_REMOVE, 0); } cnt++; } /* * Then we need to make sure that we do not lose a locally * present file that is not ignored. */ pathbuf = xmalloc(namelen + 2); memcpy(pathbuf, ce->name, namelen); strcpy(pathbuf+namelen, "/"); memset(&d, 0, sizeof(d)); if (o->dir) d.exclude_per_dir = o->dir->exclude_per_dir; i = read_directory(&d, ce->name, pathbuf, namelen+1, NULL); if (i) return o->gently ? -1 : error(ERRORMSG(o, not_uptodate_dir), ce->name); free(pathbuf); return cnt; } /* * This gets called when there was no index entry for the tree entry 'dst', * but we found a file in the working tree that 'lstat()' said was fine, * and we're on a case-insensitive filesystem. * * See if we can find a case-insensitive match in the index that also * matches the stat information, and assume it's that other file! */ static int icase_exists(struct unpack_trees_options *o, struct cache_entry *dst, struct stat *st) { struct cache_entry *src; src = index_name_exists(o->src_index, dst->name, ce_namelen(dst), 1); return src && !ie_match_stat(o->src_index, src, st, CE_MATCH_IGNORE_VALID); } /* * We do not want to remove or overwrite a working tree file that * is not tracked, unless it is ignored. */ static int verify_absent(struct cache_entry *ce, const char *action, struct unpack_trees_options *o) { struct stat st; if (o->index_only || o->reset || !o->update) return 0; if (has_symlink_or_noent_leading_path(ce->name, ce_namelen(ce))) return 0; if (!lstat(ce->name, &st)) { int ret; int dtype = ce_to_dtype(ce); struct cache_entry *result; /* * It may be that the 'lstat()' succeeded even though * target 'ce' was absent, because there is an old * entry that is different only in case.. * * Ignore that lstat() if it matches. */ if (ignore_case && icase_exists(o, ce, &st)) return 0; if (o->dir && excluded(o->dir, ce->name, &dtype)) /* * ce->name is explicitly excluded, so it is Ok to * overwrite it. */ return 0; if (S_ISDIR(st.st_mode)) { /* * We are checking out path "foo" and * found "foo/." in the working tree. * This is tricky -- if we have modified * files that are in "foo/" we would lose * it. */ ret = verify_clean_subdirectory(ce, action, o); if (ret < 0) return ret; /* * If this removed entries from the index, * what that means is: * * (1) the caller unpack_callback() saw path/foo * in the index, and it has not removed it because * it thinks it is handling 'path' as blob with * D/F conflict; * (2) we will return "ok, we placed a merged entry * in the index" which would cause o->pos to be * incremented by one; * (3) however, original o->pos now has 'path/foo' * marked with "to be removed". * * We need to increment it by the number of * deleted entries here. */ o->pos += ret; return 0; } /* * The previous round may already have decided to * delete this path, which is in a subdirectory that * is being replaced with a blob. */ result = index_name_exists(&o->result, ce->name, ce_namelen(ce), 0); if (result) { if (result->ce_flags & CE_REMOVE) return 0; } return o->gently ? -1 : error(ERRORMSG(o, would_lose_untracked), ce->name, action); } return 0; } static int merged_entry(struct cache_entry *merge, struct cache_entry *old, struct unpack_trees_options *o) { int update = CE_UPDATE; if (old) { /* * See if we can re-use the old CE directly? * That way we get the uptodate stat info. * * This also removes the UPDATE flag on a match; otherwise * we will end up overwriting local changes in the work tree. */ if (same(old, merge)) { copy_cache_entry(merge, old); update = 0; } else { if (verify_uptodate(old, o)) return -1; invalidate_ce_path(old, o); } } else { if (verify_absent(merge, "overwritten", o)) return -1; invalidate_ce_path(merge, o); } add_entry(o, merge, update, CE_STAGEMASK); return 1; } static int deleted_entry(struct cache_entry *ce, struct cache_entry *old, struct unpack_trees_options *o) { /* Did it exist in the index? */ if (!old) { if (verify_absent(ce, "removed", o)) return -1; return 0; } if (verify_uptodate(old, o)) return -1; add_entry(o, ce, CE_REMOVE, 0); invalidate_ce_path(ce, o); return 1; } static int keep_entry(struct cache_entry *ce, struct unpack_trees_options *o) { add_entry(o, ce, 0, 0); return 1; } #if DBRT_DEBUG static void show_stage_entry(FILE *o, const char *label, const struct cache_entry *ce) { if (!ce) fprintf(o, "%s (missing)\n", label); else fprintf(o, "%s%06o %s %d\t%s\n", label, ce->ce_mode, sha1_to_hex(ce->sha1), ce_stage(ce), ce->name); } #endif int threeway_merge(struct cache_entry **stages, struct unpack_trees_options *o) { struct cache_entry *index; struct cache_entry *head; struct cache_entry *remote = stages[o->head_idx + 1]; int count; int head_match = 0; int remote_match = 0; int df_conflict_head = 0; int df_conflict_remote = 0; int any_anc_missing = 0; int no_anc_exists = 1; int i; for (i = 1; i < o->head_idx; i++) { if (!stages[i] || stages[i] == o->df_conflict_entry) any_anc_missing = 1; else no_anc_exists = 0; } index = stages[0]; head = stages[o->head_idx]; if (head == o->df_conflict_entry) { df_conflict_head = 1; head = NULL; } if (remote == o->df_conflict_entry) { df_conflict_remote = 1; remote = NULL; } /* First, if there's a #16 situation, note that to prevent #13 * and #14. */ if (!same(remote, head)) { for (i = 1; i < o->head_idx; i++) { if (same(stages[i], head)) { head_match = i; } if (same(stages[i], remote)) { remote_match = i; } } } /* We start with cases where the index is allowed to match * something other than the head: #14(ALT) and #2ALT, where it * is permitted to match the result instead. */ /* #14, #14ALT, #2ALT */ if (remote && !df_conflict_head && head_match && !remote_match) { if (index && !same(index, remote) && !same(index, head)) return o->gently ? -1 : reject_merge(index, o); return merged_entry(remote, index, o); } /* * If we have an entry in the index cache, then we want to * make sure that it matches head. */ if (index && !same(index, head)) return o->gently ? -1 : reject_merge(index, o); if (head) { /* #5ALT, #15 */ if (same(head, remote)) return merged_entry(head, index, o); /* #13, #3ALT */ if (!df_conflict_remote && remote_match && !head_match) return merged_entry(head, index, o); } /* #1 */ if (!head && !remote && any_anc_missing) return 0; /* Under the new "aggressive" rule, we resolve mostly trivial * cases that we historically had git-merge-one-file resolve. */ if (o->aggressive) { int head_deleted = !head && !df_conflict_head; int remote_deleted = !remote && !df_conflict_remote; struct cache_entry *ce = NULL; if (index) ce = index; else if (head) ce = head; else if (remote) ce = remote; else { for (i = 1; i < o->head_idx; i++) { if (stages[i] && stages[i] != o->df_conflict_entry) { ce = stages[i]; break; } } } /* * Deleted in both. * Deleted in one and unchanged in the other. */ if ((head_deleted && remote_deleted) || (head_deleted && remote && remote_match) || (remote_deleted && head && head_match)) { if (index) return deleted_entry(index, index, o); if (ce && !head_deleted) { if (verify_absent(ce, "removed", o)) return -1; } return 0; } /* * Added in both, identically. */ if (no_anc_exists && head && remote && same(head, remote)) return merged_entry(head, index, o); } /* Below are "no merge" cases, which require that the index be * up-to-date to avoid the files getting overwritten with * conflict resolution files. */ if (index) { if (verify_uptodate(index, o)) return -1; } o->nontrivial_merge = 1; /* #2, #3, #4, #6, #7, #9, #10, #11. */ count = 0; if (!head_match || !remote_match) { for (i = 1; i < o->head_idx; i++) { if (stages[i] && stages[i] != o->df_conflict_entry) { keep_entry(stages[i], o); count++; break; } } } #if DBRT_DEBUG else { fprintf(stderr, "read-tree: warning #16 detected\n"); show_stage_entry(stderr, "head ", stages[head_match]); show_stage_entry(stderr, "remote ", stages[remote_match]); } #endif if (head) { count += keep_entry(head, o); } if (remote) { count += keep_entry(remote, o); } return count; } /* * Two-way merge. * * The rule is to "carry forward" what is in the index without losing * information across a "fast forward", favoring a successful merge * over a merge failure when it makes sense. For details of the * "carry forward" rule, please see . * */ int twoway_merge(struct cache_entry **src, struct unpack_trees_options *o) { struct cache_entry *current = src[0]; struct cache_entry *oldtree = src[1]; struct cache_entry *newtree = src[2]; if (o->merge_size != 2) return error("Cannot do a twoway merge of %d trees", o->merge_size); if (oldtree == o->df_conflict_entry) oldtree = NULL; if (newtree == o->df_conflict_entry) newtree = NULL; if (current) { if ((!oldtree && !newtree) || /* 4 and 5 */ (!oldtree && newtree && same(current, newtree)) || /* 6 and 7 */ (oldtree && newtree && same(oldtree, newtree)) || /* 14 and 15 */ (oldtree && newtree && !same(oldtree, newtree) && /* 18 and 19 */ same(current, newtree))) { return keep_entry(current, o); } else if (oldtree && !newtree && same(current, oldtree)) { /* 10 or 11 */ return deleted_entry(oldtree, current, o); } else if (oldtree && newtree && same(current, oldtree) && !same(current, newtree)) { /* 20 or 21 */ return merged_entry(newtree, current, o); } else { /* all other failures */ if (oldtree) return o->gently ? -1 : reject_merge(oldtree, o); if (current) return o->gently ? -1 : reject_merge(current, o); if (newtree) return o->gently ? -1 : reject_merge(newtree, o); return -1; } } else if (newtree) { if (oldtree && !o->initial_checkout) { /* * deletion of the path was staged; */ if (same(oldtree, newtree)) return 1; return reject_merge(oldtree, o); } return merged_entry(newtree, current, o); } return deleted_entry(oldtree, current, o); } /* * Bind merge. * * Keep the index entries at stage0, collapse stage1 but make sure * stage0 does not have anything there. */ int bind_merge(struct cache_entry **src, struct unpack_trees_options *o) { struct cache_entry *old = src[0]; struct cache_entry *a = src[1]; if (o->merge_size != 1) return error("Cannot do a bind merge of %d trees\n", o->merge_size); if (a && old) return o->gently ? -1 : error(ERRORMSG(o, bind_overlap), a->name, old->name); if (!a) return keep_entry(old, o); else return merged_entry(a, NULL, o); } /* * One-way merge. * * The rule is: * - take the stat information from stage0, take the data from stage1 */ int oneway_merge(struct cache_entry **src, struct unpack_trees_options *o) { struct cache_entry *old = src[0]; struct cache_entry *a = src[1]; if (o->merge_size != 1) return error("Cannot do a oneway merge of %d trees", o->merge_size); if (!a) return deleted_entry(old, old, o); if (old && same(old, a)) { int update = 0; if (o->reset) { struct stat st; if (lstat(old->name, &st) || ie_match_stat(o->src_index, old, &st, CE_MATCH_IGNORE_VALID)) update |= CE_UPDATE; } add_entry(o, old, update, 0); return 0; } return merged_entry(a, old, o); }