#include "cache.h" #include "cache-tree.h" #include "tree.h" #include "blob.h" #include "commit.h" #include "tag.h" #include "tree-walk.h" const char *tree_type = "tree"; static int read_one_entry_opt(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage, int opt) { int len; unsigned int size; struct cache_entry *ce; if (S_ISDIR(mode)) return READ_TREE_RECURSIVE; len = strlen(pathname); size = cache_entry_size(baselen + len); ce = xcalloc(1, size); ce->ce_mode = create_ce_mode(mode); ce->ce_flags = create_ce_flags(baselen + len, stage); memcpy(ce->name, base, baselen); memcpy(ce->name + baselen, pathname, len+1); hashcpy(ce->sha1, sha1); return add_cache_entry(ce, opt); } static int read_one_entry(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage) { return read_one_entry_opt(sha1, base, baselen, pathname, mode, stage, ADD_CACHE_OK_TO_ADD|ADD_CACHE_SKIP_DFCHECK); } /* * This is used when the caller knows there is no existing entries at * the stage that will conflict with the entry being added. */ static int read_one_entry_quick(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage) { return read_one_entry_opt(sha1, base, baselen, pathname, mode, stage, ADD_CACHE_JUST_APPEND); } static int match_tree_entry(const char *base, int baselen, const char *path, unsigned int mode, const char **paths) { const char *match; int pathlen; if (!paths) return 1; pathlen = strlen(path); while ((match = *paths++) != NULL) { int matchlen = strlen(match); if (baselen >= matchlen) { /* If it doesn't match, move along... */ if (strncmp(base, match, matchlen)) continue; /* The base is a subdirectory of a path which was specified. */ return 1; } /* Does the base match? */ if (strncmp(base, match, baselen)) continue; match += baselen; matchlen -= baselen; if (pathlen > matchlen) continue; if (matchlen > pathlen) { if (match[pathlen] != '/') continue; if (!S_ISDIR(mode)) continue; } if (strncmp(path, match, pathlen)) continue; return 1; } return 0; } int read_tree_recursive(struct tree *tree, const char *base, int baselen, int stage, const char **match, read_tree_fn_t fn) { struct tree_desc desc; struct name_entry entry; if (parse_tree(tree)) return -1; init_tree_desc(&desc, tree->buffer, tree->size); while (tree_entry(&desc, &entry)) { if (!match_tree_entry(base, baselen, entry.path, entry.mode, match)) continue; switch (fn(entry.sha1, base, baselen, entry.path, entry.mode, stage)) { case 0: continue; case READ_TREE_RECURSIVE: break;; default: return -1; } if (S_ISDIR(entry.mode)) { int retval; char *newbase; unsigned int pathlen = tree_entry_len(entry.path, entry.sha1); newbase = xmalloc(baselen + 1 + pathlen); memcpy(newbase, base, baselen); memcpy(newbase + baselen, entry.path, pathlen); newbase[baselen + pathlen] = '/'; retval = read_tree_recursive(lookup_tree(entry.sha1), newbase, baselen + pathlen + 1, stage, match, fn); free(newbase); if (retval) return -1; continue; } } return 0; } static int cmp_cache_name_compare(const void *a_, const void *b_) { const struct cache_entry *ce1, *ce2; ce1 = *((const struct cache_entry **)a_); ce2 = *((const struct cache_entry **)b_); return cache_name_compare(ce1->name, ntohs(ce1->ce_flags), ce2->name, ntohs(ce2->ce_flags)); } int read_tree(struct tree *tree, int stage, const char **match) { read_tree_fn_t fn = NULL; int i, err; /* * Currently the only existing callers of this function all * call it with stage=1 and after making sure there is nothing * at that stage; we could always use read_one_entry_quick(). * * But when we decide to straighten out git-read-tree not to * use unpack_trees() in some cases, this will probably start * to matter. */ /* * See if we have cache entry at the stage. If so, * do it the original slow way, otherwise, append and then * sort at the end. */ for (i = 0; !fn && i < active_nr; i++) { struct cache_entry *ce = active_cache[i]; if (ce_stage(ce) == stage) fn = read_one_entry; } if (!fn) fn = read_one_entry_quick; err = read_tree_recursive(tree, "", 0, stage, match, fn); if (fn == read_one_entry || err) return err; /* * Sort the cache entry -- we need to nuke the cache tree, though. */ cache_tree_free(&active_cache_tree); qsort(active_cache, active_nr, sizeof(active_cache[0]), cmp_cache_name_compare); return 0; } struct tree *lookup_tree(const unsigned char *sha1) { struct object *obj = lookup_object(sha1); if (!obj) return create_object(sha1, OBJ_TREE, alloc_tree_node()); if (!obj->type) obj->type = OBJ_TREE; if (obj->type != OBJ_TREE) { error("Object %s is a %s, not a tree", sha1_to_hex(sha1), typename(obj->type)); return NULL; } return (struct tree *) obj; } /* * NOTE! Tree refs to external git repositories * (ie gitlinks) do not count as real references. * * You don't have to have those repositories * available at all, much less have the objects * accessible from the current repository. */ static void track_tree_refs(struct tree *item) { int n_refs = 0, i; struct object_refs *refs; struct tree_desc desc; struct name_entry entry; /* Count how many entries there are.. */ init_tree_desc(&desc, item->buffer, item->size); while (tree_entry(&desc, &entry)) { if (S_ISGITLINK(entry.mode)) continue; n_refs++; } /* Allocate object refs and walk it again.. */ i = 0; refs = alloc_object_refs(n_refs); init_tree_desc(&desc, item->buffer, item->size); while (tree_entry(&desc, &entry)) { struct object *obj; if (S_ISGITLINK(entry.mode)) continue; if (S_ISDIR(entry.mode)) obj = &lookup_tree(entry.sha1)->object; else if (S_ISREG(entry.mode) || S_ISLNK(entry.mode)) obj = &lookup_blob(entry.sha1)->object; else { warning("in tree %s: entry %s has bad mode %.6o\n", sha1_to_hex(item->object.sha1), entry.path, entry.mode); obj = lookup_unknown_object(entry.sha1); } refs->ref[i++] = obj; } set_object_refs(&item->object, refs); } int parse_tree_buffer(struct tree *item, void *buffer, unsigned long size) { if (item->object.parsed) return 0; item->object.parsed = 1; item->buffer = buffer; item->size = size; if (track_object_refs) track_tree_refs(item); return 0; } int parse_tree(struct tree *item) { enum object_type type; void *buffer; unsigned long size; if (item->object.parsed) return 0; buffer = read_sha1_file(item->object.sha1, &type, &size); if (!buffer) return error("Could not read %s", sha1_to_hex(item->object.sha1)); if (type != OBJ_TREE) { free(buffer); return error("Object %s not a tree", sha1_to_hex(item->object.sha1)); } return parse_tree_buffer(item, buffer, size); } struct tree *parse_tree_indirect(const unsigned char *sha1) { struct object *obj = parse_object(sha1); do { if (!obj) return NULL; if (obj->type == OBJ_TREE) return (struct tree *) obj; else if (obj->type == OBJ_COMMIT) obj = &(((struct commit *) obj)->tree->object); else if (obj->type == OBJ_TAG) obj = ((struct tag *) obj)->tagged; else return NULL; if (!obj->parsed) parse_object(obj->sha1); } while (1); }