/* * SHA-1 implementation for PowerPC. * * Copyright (C) 2005 Paul Mackerras */ /* * PowerPC calling convention: * %r0 - volatile temp * %r1 - stack pointer. * %r2 - reserved * %r3-%r12 - Incoming arguments & return values; volatile. * %r13-%r31 - Callee-save registers * %lr - Return address, volatile * %ctr - volatile * * Register usage in this routine: * %r0 - temp * %r3 - argument (pointer to 5 words of SHA state) * %r4 - argument (pointer to data to hash) * %r5 - Constant K in SHA round (initially number of blocks to hash) * %r6-%r10 - Working copies of SHA variables A..E (actually E..A order) * %r11-%r26 - Data being hashed W[]. * %r27-%r31 - Previous copies of A..E, for final add back. * %ctr - loop count */ /* * We roll the registers for A, B, C, D, E around on each * iteration; E on iteration t is D on iteration t+1, and so on. * We use registers 6 - 10 for this. (Registers 27 - 31 hold * the previous values.) */ #define RA(t) (((t)+4)%5+6) #define RB(t) (((t)+3)%5+6) #define RC(t) (((t)+2)%5+6) #define RD(t) (((t)+1)%5+6) #define RE(t) (((t)+0)%5+6) /* We use registers 11 - 26 for the W values */ #define W(t) ((t)%16+11) /* Register 5 is used for the constant k */ /* * The basic SHA-1 round function is: * E += ROTL(A,5) + F(B,C,D) + W[i] + K; B = ROTL(B,30) * Then the variables are renamed: (A,B,C,D,E) = (E,A,B,C,D). * * Every 20 rounds, the function F() and the constant K changes: * - 20 rounds of f0(b,c,d) = "bit wise b ? c : d" = (^b & d) + (b & c) * - 20 rounds of f1(b,c,d) = b^c^d = (b^d)^c * - 20 rounds of f2(b,c,d) = majority(b,c,d) = (b&d) + ((b^d)&c) * - 20 more rounds of f1(b,c,d) * * These are all scheduled for near-optimal performance on a G4. * The G4 is a 3-issue out-of-order machine with 3 ALUs, but it can only * *consider* starting the oldest 3 instructions per cycle. So to get * maximum performance out of it, you have to treat it as an in-order * machine. Which means interleaving the computation round t with the * computation of W[t+4]. * * The first 16 rounds use W values loaded directly from memory, while the * remaining 64 use values computed from those first 16. We preload * 4 values before starting, so there are three kinds of rounds: * - The first 12 (all f0) also load the W values from memory. * - The next 64 compute W(i+4) in parallel. 8*f0, 20*f1, 20*f2, 16*f1. * - The last 4 (all f1) do not do anything with W. * * Therefore, we have 6 different round functions: * STEPD0_LOAD(t,s) - Perform round t and load W(s). s < 16 * STEPD0_UPDATE(t,s) - Perform round t and compute W(s). s >= 16. * STEPD1_UPDATE(t,s) * STEPD2_UPDATE(t,s) * STEPD1(t) - Perform round t with no load or update. * * The G5 is more fully out-of-order, and can find the parallelism * by itself. The big limit is that it has a 2-cycle ALU latency, so * even though it's 2-way, the code has to be scheduled as if it's * 4-way, which can be a limit. To help it, we try to schedule the * read of RA(t) as late as possible so it doesn't stall waiting for * the previous round's RE(t-1), and we try to rotate RB(t) as early * as possible while reading RC(t) (= RB(t-1)) as late as possible. */ /* the initial loads. */ #define LOADW(s) \ lwz W(s),(s)*4(%r4) /* * Perform a step with F0, and load W(s). Uses W(s) as a temporary * before loading it. * This is actually 10 instructions, which is an awkward fit. * It can execute grouped as listed, or delayed one instruction. * (If delayed two instructions, there is a stall before the start of the * second line.) Thus, two iterations take 7 cycles, 3.5 cycles per round. */ #define STEPD0_LOAD(t,s) \ add RE(t),RE(t),W(t); andc %r0,RD(t),RB(t); and W(s),RC(t),RB(t); \ add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; rotlwi RB(t),RB(t),30; \ add RE(t),RE(t),W(s); add %r0,%r0,%r5; lwz W(s),(s)*4(%r4); \ add RE(t),RE(t),%r0 /* * This is likewise awkward, 13 instructions. However, it can also * execute starting with 2 out of 3 possible moduli, so it does 2 rounds * in 9 cycles, 4.5 cycles/round. */ #define STEPD0_UPDATE(t,s,loadk...) \ add RE(t),RE(t),W(t); andc %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ add RE(t),RE(t),%r0; and %r0,RC(t),RB(t); xor W(s),W(s),W((s)-8); \ add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; xor W(s),W(s),W((s)-14); \ add RE(t),RE(t),%r5; loadk; rotlwi RB(t),RB(t),30; rotlwi W(s),W(s),1; \ add RE(t),RE(t),%r0 /* Nicely optimal. Conveniently, also the most common. */ #define STEPD1_UPDATE(t,s,loadk...) \ add RE(t),RE(t),W(t); xor %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ add RE(t),RE(t),%r5; loadk; xor %r0,%r0,RC(t); xor W(s),W(s),W((s)-8); \ add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; xor W(s),W(s),W((s)-14); \ add RE(t),RE(t),%r0; rotlwi RB(t),RB(t),30; rotlwi W(s),W(s),1 /* * The naked version, no UPDATE, for the last 4 rounds. 3 cycles per. * We could use W(s) as a temp register, but we don't need it. */ #define STEPD1(t) \ add RE(t),RE(t),W(t); xor %r0,RD(t),RB(t); \ rotlwi RB(t),RB(t),30; add RE(t),RE(t),%r5; xor %r0,%r0,RC(t); \ add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; /* spare slot */ \ add RE(t),RE(t),%r0 /* * 14 instructions, 5 cycles per. The majority function is a bit * awkward to compute. This can execute with a 1-instruction delay, * but it causes a 2-instruction delay, which triggers a stall. */ #define STEPD2_UPDATE(t,s,loadk...) \ add RE(t),RE(t),W(t); and %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ add RE(t),RE(t),%r0; xor %r0,RD(t),RB(t); xor W(s),W(s),W((s)-8); \ add RE(t),RE(t),%r5; loadk; and %r0,%r0,RC(t); xor W(s),W(s),W((s)-14); \ add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; rotlwi W(s),W(s),1; \ add RE(t),RE(t),%r0; rotlwi RB(t),RB(t),30 #define STEP0_LOAD4(t,s) \ STEPD0_LOAD(t,s); \ STEPD0_LOAD((t+1),(s)+1); \ STEPD0_LOAD((t)+2,(s)+2); \ STEPD0_LOAD((t)+3,(s)+3) #define STEPUP4(fn, t, s, loadk...) \ STEP##fn##_UPDATE(t,s,); \ STEP##fn##_UPDATE((t)+1,(s)+1,); \ STEP##fn##_UPDATE((t)+2,(s)+2,); \ STEP##fn##_UPDATE((t)+3,(s)+3,loadk) #define STEPUP20(fn, t, s, loadk...) \ STEPUP4(fn, t, s,); \ STEPUP4(fn, (t)+4, (s)+4,); \ STEPUP4(fn, (t)+8, (s)+8,); \ STEPUP4(fn, (t)+12, (s)+12,); \ STEPUP4(fn, (t)+16, (s)+16, loadk) .globl ppc_sha1_core ppc_sha1_core: stwu %r1,-80(%r1) stmw %r13,4(%r1) /* Load up A - E */ lmw %r27,0(%r3) mtctr %r5 1: LOADW(0) lis %r5,0x5a82 mr RE(0),%r31 LOADW(1) mr RD(0),%r30 mr RC(0),%r29 LOADW(2) ori %r5,%r5,0x7999 /* K0-19 */ mr RB(0),%r28 LOADW(3) mr RA(0),%r27 STEP0_LOAD4(0, 4) STEP0_LOAD4(4, 8) STEP0_LOAD4(8, 12) STEPUP4(D0, 12, 16,) STEPUP4(D0, 16, 20, lis %r5,0x6ed9) ori %r5,%r5,0xeba1 /* K20-39 */ STEPUP20(D1, 20, 24, lis %r5,0x8f1b) ori %r5,%r5,0xbcdc /* K40-59 */ STEPUP20(D2, 40, 44, lis %r5,0xca62) ori %r5,%r5,0xc1d6 /* K60-79 */ STEPUP4(D1, 60, 64,) STEPUP4(D1, 64, 68,) STEPUP4(D1, 68, 72,) STEPUP4(D1, 72, 76,) addi %r4,%r4,64 STEPD1(76) STEPD1(77) STEPD1(78) STEPD1(79) /* Add results to original values */ add %r31,%r31,RE(0) add %r30,%r30,RD(0) add %r29,%r29,RC(0) add %r28,%r28,RB(0) add %r27,%r27,RA(0) bdnz 1b /* Save final hash, restore registers, and return */ stmw %r27,0(%r3) lmw %r13,4(%r1) addi %r1,%r1,80 blr