#include "cache.h" #include "pack-revindex.h" #include "object-store.h" #include "packfile.h" #include "config.h" #include "midx.h" struct revindex_entry { off_t offset; unsigned int nr; }; /* * Pack index for existing packs give us easy access to the offsets into * corresponding pack file where each object's data starts, but the entries * do not store the size of the compressed representation (uncompressed * size is easily available by examining the pack entry header). It is * also rather expensive to find the sha1 for an object given its offset. * * The pack index file is sorted by object name mapping to offset; * this revindex array is a list of offset/index_nr pairs * ordered by offset, so if you know the offset of an object, next offset * is where its packed representation ends and the index_nr can be used to * get the object sha1 from the main index. */ /* * This is a least-significant-digit radix sort. * * It sorts each of the "n" items in "entries" by its offset field. The "max" * parameter must be at least as large as the largest offset in the array, * and lets us quit the sort early. */ static void sort_revindex(struct revindex_entry *entries, unsigned n, off_t max) { /* * We use a "digit" size of 16 bits. That keeps our memory * usage reasonable, and we can generally (for a 4G or smaller * packfile) quit after two rounds of radix-sorting. */ #define DIGIT_SIZE (16) #define BUCKETS (1 << DIGIT_SIZE) /* * We want to know the bucket that a[i] will go into when we are using * the digit that is N bits from the (least significant) end. */ #define BUCKET_FOR(a, i, bits) (((a)[(i)].offset >> (bits)) & (BUCKETS-1)) /* * We need O(n) temporary storage. Rather than do an extra copy of the * partial results into "entries", we sort back and forth between the * real array and temporary storage. In each iteration of the loop, we * keep track of them with alias pointers, always sorting from "from" * to "to". */ struct revindex_entry *tmp, *from, *to; int bits; unsigned *pos; ALLOC_ARRAY(pos, BUCKETS); ALLOC_ARRAY(tmp, n); from = entries; to = tmp; /* * If (max >> bits) is zero, then we know that the radix digit we are * on (and any higher) will be zero for all entries, and our loop will * be a no-op, as everybody lands in the same zero-th bucket. */ for (bits = 0; max >> bits; bits += DIGIT_SIZE) { unsigned i; memset(pos, 0, BUCKETS * sizeof(*pos)); /* * We want pos[i] to store the index of the last element that * will go in bucket "i" (actually one past the last element). * To do this, we first count the items that will go in each * bucket, which gives us a relative offset from the last * bucket. We can then cumulatively add the index from the * previous bucket to get the true index. */ for (i = 0; i < n; i++) pos[BUCKET_FOR(from, i, bits)]++; for (i = 1; i < BUCKETS; i++) pos[i] += pos[i-1]; /* * Now we can drop the elements into their correct buckets (in * our temporary array). We iterate the pos counter backwards * to avoid using an extra index to count up. And since we are * going backwards there, we must also go backwards through the * array itself, to keep the sort stable. * * Note that we use an unsigned iterator to make sure we can * handle 2^32-1 objects, even on a 32-bit system. But this * means we cannot use the more obvious "i >= 0" loop condition * for counting backwards, and must instead check for * wrap-around with UINT_MAX. */ for (i = n - 1; i != UINT_MAX; i--) to[--pos[BUCKET_FOR(from, i, bits)]] = from[i]; /* * Now "to" contains the most sorted list, so we swap "from" and * "to" for the next iteration. */ SWAP(from, to); } /* * If we ended with our data in the original array, great. If not, * we have to move it back from the temporary storage. */ if (from != entries) COPY_ARRAY(entries, tmp, n); free(tmp); free(pos); #undef BUCKET_FOR #undef BUCKETS #undef DIGIT_SIZE } /* * Ordered list of offsets of objects in the pack. */ static void create_pack_revindex(struct packed_git *p) { const unsigned num_ent = p->num_objects; unsigned i; const char *index = p->index_data; const unsigned hashsz = the_hash_algo->rawsz; ALLOC_ARRAY(p->revindex, num_ent + 1); index += 4 * 256; if (p->index_version > 1) { const uint32_t *off_32 = (uint32_t *)(index + 8 + (size_t)p->num_objects * (hashsz + 4)); const uint32_t *off_64 = off_32 + p->num_objects; for (i = 0; i < num_ent; i++) { const uint32_t off = ntohl(*off_32++); if (!(off & 0x80000000)) { p->revindex[i].offset = off; } else { p->revindex[i].offset = get_be64(off_64); off_64 += 2; } p->revindex[i].nr = i; } } else { for (i = 0; i < num_ent; i++) { const uint32_t hl = *((uint32_t *)(index + (hashsz + 4) * i)); p->revindex[i].offset = ntohl(hl); p->revindex[i].nr = i; } } /* * This knows the pack format -- the hash trailer * follows immediately after the last object data. */ p->revindex[num_ent].offset = p->pack_size - hashsz; p->revindex[num_ent].nr = -1; sort_revindex(p->revindex, num_ent, p->pack_size); } static int create_pack_revindex_in_memory(struct packed_git *p) { if (git_env_bool(GIT_TEST_REV_INDEX_DIE_IN_MEMORY, 0)) die("dying as requested by '%s'", GIT_TEST_REV_INDEX_DIE_IN_MEMORY); if (open_pack_index(p)) return -1; create_pack_revindex(p); return 0; } static char *pack_revindex_filename(struct packed_git *p) { size_t len; if (!strip_suffix(p->pack_name, ".pack", &len)) BUG("pack_name does not end in .pack"); return xstrfmt("%.*s.rev", (int)len, p->pack_name); } #define RIDX_HEADER_SIZE (12) #define RIDX_MIN_SIZE (RIDX_HEADER_SIZE + (2 * the_hash_algo->rawsz)) struct revindex_header { uint32_t signature; uint32_t version; uint32_t hash_id; }; static int load_revindex_from_disk(char *revindex_name, uint32_t num_objects, const uint32_t **data_p, size_t *len_p) { int fd, ret = 0; struct stat st; void *data = NULL; size_t revindex_size; struct revindex_header *hdr; fd = git_open(revindex_name); if (fd < 0) { ret = -1; goto cleanup; } if (fstat(fd, &st)) { ret = error_errno(_("failed to read %s"), revindex_name); goto cleanup; } revindex_size = xsize_t(st.st_size); if (revindex_size < RIDX_MIN_SIZE) { ret = error(_("reverse-index file %s is too small"), revindex_name); goto cleanup; } if (revindex_size - RIDX_MIN_SIZE != st_mult(sizeof(uint32_t), num_objects)) { ret = error(_("reverse-index file %s is corrupt"), revindex_name); goto cleanup; } data = xmmap(NULL, revindex_size, PROT_READ, MAP_PRIVATE, fd, 0); hdr = data; if (ntohl(hdr->signature) != RIDX_SIGNATURE) { ret = error(_("reverse-index file %s has unknown signature"), revindex_name); goto cleanup; } if (ntohl(hdr->version) != 1) { ret = error(_("reverse-index file %s has unsupported version %"PRIu32), revindex_name, ntohl(hdr->version)); goto cleanup; } if (!(ntohl(hdr->hash_id) == 1 || ntohl(hdr->hash_id) == 2)) { ret = error(_("reverse-index file %s has unsupported hash id %"PRIu32), revindex_name, ntohl(hdr->hash_id)); goto cleanup; } cleanup: if (ret) { if (data) munmap(data, revindex_size); } else { *len_p = revindex_size; *data_p = (const uint32_t *)data; } if (fd >= 0) close(fd); return ret; } static int load_pack_revindex_from_disk(struct packed_git *p) { char *revindex_name; int ret; if (open_pack_index(p)) return -1; revindex_name = pack_revindex_filename(p); ret = load_revindex_from_disk(revindex_name, p->num_objects, &p->revindex_map, &p->revindex_size); if (ret) goto cleanup; p->revindex_data = (const uint32_t *)((const char *)p->revindex_map + RIDX_HEADER_SIZE); cleanup: free(revindex_name); return ret; } int load_pack_revindex(struct packed_git *p) { if (p->revindex || p->revindex_data) return 0; if (!load_pack_revindex_from_disk(p)) return 0; else if (!create_pack_revindex_in_memory(p)) return 0; return -1; } int load_midx_revindex(struct multi_pack_index *m) { char *revindex_name; int ret; if (m->revindex_data) return 0; revindex_name = get_midx_rev_filename(m); ret = load_revindex_from_disk(revindex_name, m->num_objects, &m->revindex_map, &m->revindex_len); if (ret) goto cleanup; m->revindex_data = (const uint32_t *)((const char *)m->revindex_map + RIDX_HEADER_SIZE); cleanup: free(revindex_name); return ret; } int close_midx_revindex(struct multi_pack_index *m) { if (!m || !m->revindex_map) return 0; munmap((void*)m->revindex_map, m->revindex_len); m->revindex_map = NULL; m->revindex_data = NULL; m->revindex_len = 0; return 0; } int offset_to_pack_pos(struct packed_git *p, off_t ofs, uint32_t *pos) { unsigned lo, hi; if (load_pack_revindex(p) < 0) return -1; lo = 0; hi = p->num_objects + 1; do { const unsigned mi = lo + (hi - lo) / 2; off_t got = pack_pos_to_offset(p, mi); if (got == ofs) { *pos = mi; return 0; } else if (ofs < got) hi = mi; else lo = mi + 1; } while (lo < hi); error("bad offset for revindex"); return -1; } uint32_t pack_pos_to_index(struct packed_git *p, uint32_t pos) { if (!(p->revindex || p->revindex_data)) BUG("pack_pos_to_index: reverse index not yet loaded"); if (p->num_objects <= pos) BUG("pack_pos_to_index: out-of-bounds object at %"PRIu32, pos); if (p->revindex) return p->revindex[pos].nr; else return get_be32(p->revindex_data + pos); } off_t pack_pos_to_offset(struct packed_git *p, uint32_t pos) { if (!(p->revindex || p->revindex_data)) BUG("pack_pos_to_index: reverse index not yet loaded"); if (p->num_objects < pos) BUG("pack_pos_to_offset: out-of-bounds object at %"PRIu32, pos); if (p->revindex) return p->revindex[pos].offset; else if (pos == p->num_objects) return p->pack_size - the_hash_algo->rawsz; else return nth_packed_object_offset(p, pack_pos_to_index(p, pos)); } uint32_t pack_pos_to_midx(struct multi_pack_index *m, uint32_t pos) { if (!m->revindex_data) BUG("pack_pos_to_midx: reverse index not yet loaded"); if (m->num_objects <= pos) BUG("pack_pos_to_midx: out-of-bounds object at %"PRIu32, pos); return get_be32(m->revindex_data + pos); } struct midx_pack_key { uint32_t pack; off_t offset; uint32_t preferred_pack; struct multi_pack_index *midx; }; static int midx_pack_order_cmp(const void *va, const void *vb) { const struct midx_pack_key *key = va; struct multi_pack_index *midx = key->midx; uint32_t versus = pack_pos_to_midx(midx, (uint32_t*)vb - (const uint32_t *)midx->revindex_data); uint32_t versus_pack = nth_midxed_pack_int_id(midx, versus); off_t versus_offset; uint32_t key_preferred = key->pack == key->preferred_pack; uint32_t versus_preferred = versus_pack == key->preferred_pack; /* * First, compare the preferred-ness, noting that the preferred pack * comes first. */ if (key_preferred && !versus_preferred) return -1; else if (!key_preferred && versus_preferred) return 1; /* Then, break ties first by comparing the pack IDs. */ if (key->pack < versus_pack) return -1; else if (key->pack > versus_pack) return 1; /* Finally, break ties by comparing offsets within a pack. */ versus_offset = nth_midxed_offset(midx, versus); if (key->offset < versus_offset) return -1; else if (key->offset > versus_offset) return 1; return 0; } int midx_to_pack_pos(struct multi_pack_index *m, uint32_t at, uint32_t *pos) { struct midx_pack_key key; uint32_t *found; if (!m->revindex_data) BUG("midx_to_pack_pos: reverse index not yet loaded"); if (m->num_objects <= at) BUG("midx_to_pack_pos: out-of-bounds object at %"PRIu32, at); key.pack = nth_midxed_pack_int_id(m, at); key.offset = nth_midxed_offset(m, at); key.midx = m; /* * The preferred pack sorts first, so determine its identifier by * looking at the first object in pseudo-pack order. * * Note that if no --preferred-pack is explicitly given when writing a * multi-pack index, then whichever pack has the lowest identifier * implicitly is preferred (and includes all its objects, since ties are * broken first by pack identifier). */ key.preferred_pack = nth_midxed_pack_int_id(m, pack_pos_to_midx(m, 0)); found = bsearch(&key, m->revindex_data, m->num_objects, sizeof(*m->revindex_data), midx_pack_order_cmp); if (!found) return error("bad offset for revindex"); *pos = found - m->revindex_data; return 0; }