#include "cache.h" #include "commit.h" #include "notes.h" #include "refs.h" #include "utf8.h" #include "strbuf.h" #include "tree-walk.h" /* * Use a non-balancing simple 16-tree structure with struct int_node as * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a * 16-array of pointers to its children. * The bottom 2 bits of each pointer is used to identify the pointer type * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL) * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node * * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node * * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node * * * The root node is a statically allocated struct int_node. */ struct int_node { void *a[16]; }; /* * Leaf nodes come in two variants, note entries and subtree entries, * distinguished by the LSb of the leaf node pointer (see above). * As a note entry, the key is the SHA1 of the referenced commit, and the * value is the SHA1 of the note object. * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the * referenced commit, using the last byte of the key to store the length of * the prefix. The value is the SHA1 of the tree object containing the notes * subtree. */ struct leaf_node { unsigned char key_sha1[20]; unsigned char val_sha1[20]; }; #define PTR_TYPE_NULL 0 #define PTR_TYPE_INTERNAL 1 #define PTR_TYPE_NOTE 2 #define PTR_TYPE_SUBTREE 3 #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3) #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3)) #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type))) #define GET_NIBBLE(n, sha1) (((sha1[n >> 1]) >> ((~n & 0x01) << 2)) & 0x0f) #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \ (memcmp(key_sha1, subtree_sha1, subtree_sha1[19])) static struct int_node root_node; static int initialized; static void load_subtree(struct leaf_node *subtree, struct int_node *node, unsigned int n); /* * Search the tree until the appropriate location for the given key is found: * 1. Start at the root node, with n = 0 * 2. If a[0] at the current level is a matching subtree entry, unpack that * subtree entry and remove it; restart search at the current level. * 3. Use the nth nibble of the key as an index into a: * - If a[n] is an int_node, recurse from #2 into that node and increment n * - If a matching subtree entry, unpack that subtree entry (and remove it); * restart search at the current level. * - Otherwise, we have found one of the following: * - a subtree entry which does not match the key * - a note entry which may or may not match the key * - an unused leaf node (NULL) * In any case, set *tree and *n, and return pointer to the tree location. */ static void **note_tree_search(struct int_node **tree, unsigned char *n, const unsigned char *key_sha1) { struct leaf_node *l; unsigned char i; void *p = (*tree)->a[0]; if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) { l = (struct leaf_node *) CLR_PTR_TYPE(p); if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { /* unpack tree and resume search */ (*tree)->a[0] = NULL; load_subtree(l, *tree, *n); free(l); return note_tree_search(tree, n, key_sha1); } } i = GET_NIBBLE(*n, key_sha1); p = (*tree)->a[i]; switch(GET_PTR_TYPE(p)) { case PTR_TYPE_INTERNAL: *tree = CLR_PTR_TYPE(p); (*n)++; return note_tree_search(tree, n, key_sha1); case PTR_TYPE_SUBTREE: l = (struct leaf_node *) CLR_PTR_TYPE(p); if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { /* unpack tree and resume search */ (*tree)->a[i] = NULL; load_subtree(l, *tree, *n); free(l); return note_tree_search(tree, n, key_sha1); } /* fall through */ default: return &((*tree)->a[i]); } } /* * To find a leaf_node: * Search to the tree location appropriate for the given key: * If a note entry with matching key, return the note entry, else return NULL. */ static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n, const unsigned char *key_sha1) { void **p = note_tree_search(&tree, &n, key_sha1); if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) { struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p); if (!hashcmp(key_sha1, l->key_sha1)) return l; } return NULL; } /* Create a new blob object by concatenating the two given blob objects */ static int concatenate_notes(unsigned char *cur_sha1, const unsigned char *new_sha1) { char *cur_msg, *new_msg, *buf; unsigned long cur_len, new_len, buf_len; enum object_type cur_type, new_type; int ret; /* read in both note blob objects */ new_msg = read_sha1_file(new_sha1, &new_type, &new_len); if (!new_msg || !new_len || new_type != OBJ_BLOB) { free(new_msg); return 0; } cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len); if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) { free(cur_msg); free(new_msg); hashcpy(cur_sha1, new_sha1); return 0; } /* we will separate the notes by a newline anyway */ if (cur_msg[cur_len - 1] == '\n') cur_len--; /* concatenate cur_msg and new_msg into buf */ buf_len = cur_len + 1 + new_len; buf = (char *) xmalloc(buf_len); memcpy(buf, cur_msg, cur_len); buf[cur_len] = '\n'; memcpy(buf + cur_len + 1, new_msg, new_len); free(cur_msg); free(new_msg); /* create a new blob object from buf */ ret = write_sha1_file(buf, buf_len, "blob", cur_sha1); free(buf); return ret; } /* * To insert a leaf_node: * Search to the tree location appropriate for the given leaf_node's key: * - If location is unused (NULL), store the tweaked pointer directly there * - If location holds a note entry that matches the note-to-be-inserted, then * concatenate the two notes. * - If location holds a note entry that matches the subtree-to-be-inserted, * then unpack the subtree-to-be-inserted into the location. * - If location holds a matching subtree entry, unpack the subtree at that * location, and restart the insert operation from that level. * - Else, create a new int_node, holding both the node-at-location and the * node-to-be-inserted, and store the new int_node into the location. */ static void note_tree_insert(struct int_node *tree, unsigned char n, struct leaf_node *entry, unsigned char type) { struct int_node *new_node; struct leaf_node *l; void **p = note_tree_search(&tree, &n, entry->key_sha1); assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ l = (struct leaf_node *) CLR_PTR_TYPE(*p); switch(GET_PTR_TYPE(*p)) { case PTR_TYPE_NULL: assert(!*p); *p = SET_PTR_TYPE(entry, type); return; case PTR_TYPE_NOTE: switch (type) { case PTR_TYPE_NOTE: if (!hashcmp(l->key_sha1, entry->key_sha1)) { /* skip concatenation if l == entry */ if (!hashcmp(l->val_sha1, entry->val_sha1)) return; if (concatenate_notes(l->val_sha1, entry->val_sha1)) die("failed to concatenate note %s " "into note %s for commit %s", sha1_to_hex(entry->val_sha1), sha1_to_hex(l->val_sha1), sha1_to_hex(l->key_sha1)); free(entry); return; } break; case PTR_TYPE_SUBTREE: if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1, entry->key_sha1)) { /* unpack 'entry' */ load_subtree(entry, tree, n); free(entry); return; } break; } break; case PTR_TYPE_SUBTREE: if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) { /* unpack 'l' and restart insert */ *p = NULL; load_subtree(l, tree, n); free(l); note_tree_insert(tree, n, entry, type); return; } break; } /* non-matching leaf_node */ assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE || GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE); new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1); note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p)); *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL); note_tree_insert(new_node, n + 1, entry, type); } /* Free the entire notes data contained in the given tree */ static void note_tree_free(struct int_node *tree) { unsigned int i; for (i = 0; i < 16; i++) { void *p = tree->a[i]; switch(GET_PTR_TYPE(p)) { case PTR_TYPE_INTERNAL: note_tree_free(CLR_PTR_TYPE(p)); /* fall through */ case PTR_TYPE_NOTE: case PTR_TYPE_SUBTREE: free(CLR_PTR_TYPE(p)); } } } /* * Convert a partial SHA1 hex string to the corresponding partial SHA1 value. * - hex - Partial SHA1 segment in ASCII hex format * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40 * - sha1 - Partial SHA1 value is written here * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format). * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2). * Pads sha1 with NULs up to sha1_len (not included in returned length). */ static int get_sha1_hex_segment(const char *hex, unsigned int hex_len, unsigned char *sha1, unsigned int sha1_len) { unsigned int i, len = hex_len >> 1; if (hex_len % 2 != 0 || len > sha1_len) return -1; for (i = 0; i < len; i++) { unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]); if (val & ~0xff) return -1; *sha1++ = val; hex += 2; } for (; i < sha1_len; i++) *sha1++ = 0; return len; } static void load_subtree(struct leaf_node *subtree, struct int_node *node, unsigned int n) { unsigned char commit_sha1[20]; unsigned int prefix_len; void *buf; struct tree_desc desc; struct name_entry entry; buf = fill_tree_descriptor(&desc, subtree->val_sha1); if (!buf) die("Could not read %s for notes-index", sha1_to_hex(subtree->val_sha1)); prefix_len = subtree->key_sha1[19]; assert(prefix_len * 2 >= n); memcpy(commit_sha1, subtree->key_sha1, prefix_len); while (tree_entry(&desc, &entry)) { int len = get_sha1_hex_segment(entry.path, strlen(entry.path), commit_sha1 + prefix_len, 20 - prefix_len); if (len < 0) continue; /* entry.path is not a SHA1 sum. Skip */ len += prefix_len; /* * If commit SHA1 is complete (len == 20), assume note object * If commit SHA1 is incomplete (len < 20), assume note subtree */ if (len <= 20) { unsigned char type = PTR_TYPE_NOTE; struct leaf_node *l = (struct leaf_node *) xcalloc(sizeof(struct leaf_node), 1); hashcpy(l->key_sha1, commit_sha1); hashcpy(l->val_sha1, entry.sha1); if (len < 20) { if (!S_ISDIR(entry.mode)) continue; /* entry cannot be subtree */ l->key_sha1[19] = (unsigned char) len; type = PTR_TYPE_SUBTREE; } note_tree_insert(node, n, l, type); } } free(buf); } static void initialize_notes(const char *notes_ref_name) { unsigned char sha1[20], commit_sha1[20]; unsigned mode; struct leaf_node root_tree; if (!notes_ref_name || read_ref(notes_ref_name, commit_sha1) || get_tree_entry(commit_sha1, "", sha1, &mode)) return; hashclr(root_tree.key_sha1); hashcpy(root_tree.val_sha1, sha1); load_subtree(&root_tree, &root_node, 0); } static unsigned char *lookup_notes(const unsigned char *commit_sha1) { struct leaf_node *found = note_tree_find(&root_node, 0, commit_sha1); if (found) return found->val_sha1; return NULL; } void free_notes(void) { note_tree_free(&root_node); memset(&root_node, 0, sizeof(struct int_node)); initialized = 0; } void get_commit_notes(const struct commit *commit, struct strbuf *sb, const char *output_encoding, int flags) { static const char utf8[] = "utf-8"; unsigned char *sha1; char *msg, *msg_p; unsigned long linelen, msglen; enum object_type type; if (!initialized) { const char *env = getenv(GIT_NOTES_REF_ENVIRONMENT); if (env) notes_ref_name = getenv(GIT_NOTES_REF_ENVIRONMENT); else if (!notes_ref_name) notes_ref_name = GIT_NOTES_DEFAULT_REF; initialize_notes(notes_ref_name); initialized = 1; } sha1 = lookup_notes(commit->object.sha1); if (!sha1) return; if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen || type != OBJ_BLOB) { free(msg); return; } if (output_encoding && *output_encoding && strcmp(utf8, output_encoding)) { char *reencoded = reencode_string(msg, output_encoding, utf8); if (reencoded) { free(msg); msg = reencoded; msglen = strlen(msg); } } /* we will end the annotation by a newline anyway */ if (msglen && msg[msglen - 1] == '\n') msglen--; if (flags & NOTES_SHOW_HEADER) strbuf_addstr(sb, "\nNotes:\n"); for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) { linelen = strchrnul(msg_p, '\n') - msg_p; if (flags & NOTES_INDENT) strbuf_addstr(sb, " "); strbuf_add(sb, msg_p, linelen); strbuf_addch(sb, '\n'); } free(msg); }