#include "cache.h" #include "notes.h" #include "blob.h" #include "tree.h" #include "utf8.h" #include "strbuf.h" #include "tree-walk.h" #include "string-list.h" #include "refs.h" /* * Use a non-balancing simple 16-tree structure with struct int_node as * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a * 16-array of pointers to its children. * The bottom 2 bits of each pointer is used to identify the pointer type * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL) * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node * * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node * * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node * * * The root node is a statically allocated struct int_node. */ struct int_node { void *a[16]; }; /* * Leaf nodes come in two variants, note entries and subtree entries, * distinguished by the LSb of the leaf node pointer (see above). * As a note entry, the key is the SHA1 of the referenced object, and the * value is the SHA1 of the note object. * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the * referenced object, using the last byte of the key to store the length of * the prefix. The value is the SHA1 of the tree object containing the notes * subtree. */ struct leaf_node { unsigned char key_sha1[20]; unsigned char val_sha1[20]; }; /* * A notes tree may contain entries that are not notes, and that do not follow * the naming conventions of notes. There are typically none/few of these, but * we still need to keep track of them. Keep a simple linked list sorted alpha- * betically on the non-note path. The list is populated when parsing tree * objects in load_subtree(), and the non-notes are correctly written back into * the tree objects produced by write_notes_tree(). */ struct non_note { struct non_note *next; /* grounded (last->next == NULL) */ char *path; unsigned int mode; unsigned char sha1[20]; }; #define PTR_TYPE_NULL 0 #define PTR_TYPE_INTERNAL 1 #define PTR_TYPE_NOTE 2 #define PTR_TYPE_SUBTREE 3 #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3) #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3)) #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type))) #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f) #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \ (memcmp(key_sha1, subtree_sha1, subtree_sha1[19])) struct notes_tree default_notes_tree; static struct string_list display_notes_refs; static struct notes_tree **display_notes_trees; static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, struct int_node *node, unsigned int n); /* * Search the tree until the appropriate location for the given key is found: * 1. Start at the root node, with n = 0 * 2. If a[0] at the current level is a matching subtree entry, unpack that * subtree entry and remove it; restart search at the current level. * 3. Use the nth nibble of the key as an index into a: * - If a[n] is an int_node, recurse from #2 into that node and increment n * - If a matching subtree entry, unpack that subtree entry (and remove it); * restart search at the current level. * - Otherwise, we have found one of the following: * - a subtree entry which does not match the key * - a note entry which may or may not match the key * - an unused leaf node (NULL) * In any case, set *tree and *n, and return pointer to the tree location. */ static void **note_tree_search(struct notes_tree *t, struct int_node **tree, unsigned char *n, const unsigned char *key_sha1) { struct leaf_node *l; unsigned char i; void *p = (*tree)->a[0]; if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) { l = (struct leaf_node *) CLR_PTR_TYPE(p); if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { /* unpack tree and resume search */ (*tree)->a[0] = NULL; load_subtree(t, l, *tree, *n); free(l); return note_tree_search(t, tree, n, key_sha1); } } i = GET_NIBBLE(*n, key_sha1); p = (*tree)->a[i]; switch (GET_PTR_TYPE(p)) { case PTR_TYPE_INTERNAL: *tree = CLR_PTR_TYPE(p); (*n)++; return note_tree_search(t, tree, n, key_sha1); case PTR_TYPE_SUBTREE: l = (struct leaf_node *) CLR_PTR_TYPE(p); if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { /* unpack tree and resume search */ (*tree)->a[i] = NULL; load_subtree(t, l, *tree, *n); free(l); return note_tree_search(t, tree, n, key_sha1); } /* fall through */ default: return &((*tree)->a[i]); } } /* * To find a leaf_node: * Search to the tree location appropriate for the given key: * If a note entry with matching key, return the note entry, else return NULL. */ static struct leaf_node *note_tree_find(struct notes_tree *t, struct int_node *tree, unsigned char n, const unsigned char *key_sha1) { void **p = note_tree_search(t, &tree, &n, key_sha1); if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) { struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p); if (!hashcmp(key_sha1, l->key_sha1)) return l; } return NULL; } /* * To insert a leaf_node: * Search to the tree location appropriate for the given leaf_node's key: * - If location is unused (NULL), store the tweaked pointer directly there * - If location holds a note entry that matches the note-to-be-inserted, then * combine the two notes (by calling the given combine_notes function). * - If location holds a note entry that matches the subtree-to-be-inserted, * then unpack the subtree-to-be-inserted into the location. * - If location holds a matching subtree entry, unpack the subtree at that * location, and restart the insert operation from that level. * - Else, create a new int_node, holding both the node-at-location and the * node-to-be-inserted, and store the new int_node into the location. */ static void note_tree_insert(struct notes_tree *t, struct int_node *tree, unsigned char n, struct leaf_node *entry, unsigned char type, combine_notes_fn combine_notes) { struct int_node *new_node; struct leaf_node *l; void **p = note_tree_search(t, &tree, &n, entry->key_sha1); assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ l = (struct leaf_node *) CLR_PTR_TYPE(*p); switch (GET_PTR_TYPE(*p)) { case PTR_TYPE_NULL: assert(!*p); *p = SET_PTR_TYPE(entry, type); return; case PTR_TYPE_NOTE: switch (type) { case PTR_TYPE_NOTE: if (!hashcmp(l->key_sha1, entry->key_sha1)) { /* skip concatenation if l == entry */ if (!hashcmp(l->val_sha1, entry->val_sha1)) return; if (combine_notes(l->val_sha1, entry->val_sha1)) die("failed to combine notes %s and %s" " for object %s", sha1_to_hex(l->val_sha1), sha1_to_hex(entry->val_sha1), sha1_to_hex(l->key_sha1)); free(entry); return; } break; case PTR_TYPE_SUBTREE: if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1, entry->key_sha1)) { /* unpack 'entry' */ load_subtree(t, entry, tree, n); free(entry); return; } break; } break; case PTR_TYPE_SUBTREE: if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) { /* unpack 'l' and restart insert */ *p = NULL; load_subtree(t, l, tree, n); free(l); note_tree_insert(t, tree, n, entry, type, combine_notes); return; } break; } /* non-matching leaf_node */ assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE || GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE); new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1); note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p), combine_notes); *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL); note_tree_insert(t, new_node, n + 1, entry, type, combine_notes); } /* * How to consolidate an int_node: * If there are > 1 non-NULL entries, give up and return non-zero. * Otherwise replace the int_node at the given index in the given parent node * with the only entry (or a NULL entry if no entries) from the given tree, * and return 0. */ static int note_tree_consolidate(struct int_node *tree, struct int_node *parent, unsigned char index) { unsigned int i; void *p = NULL; assert(tree && parent); assert(CLR_PTR_TYPE(parent->a[index]) == tree); for (i = 0; i < 16; i++) { if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) { if (p) /* more than one entry */ return -2; p = tree->a[i]; } } /* replace tree with p in parent[index] */ parent->a[index] = p; free(tree); return 0; } /* * To remove a leaf_node: * Search to the tree location appropriate for the given leaf_node's key: * - If location does not hold a matching entry, abort and do nothing. * - Replace the matching leaf_node with a NULL entry (and free the leaf_node). * - Consolidate int_nodes repeatedly, while walking up the tree towards root. */ static void note_tree_remove(struct notes_tree *t, struct int_node *tree, unsigned char n, struct leaf_node *entry) { struct leaf_node *l; struct int_node *parent_stack[20]; unsigned char i, j; void **p = note_tree_search(t, &tree, &n, entry->key_sha1); assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE) return; /* type mismatch, nothing to remove */ l = (struct leaf_node *) CLR_PTR_TYPE(*p); if (hashcmp(l->key_sha1, entry->key_sha1)) return; /* key mismatch, nothing to remove */ /* we have found a matching entry */ free(l); *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL); /* consolidate this tree level, and parent levels, if possible */ if (!n) return; /* cannot consolidate top level */ /* first, build stack of ancestors between root and current node */ parent_stack[0] = t->root; for (i = 0; i < n; i++) { j = GET_NIBBLE(i, entry->key_sha1); parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]); } assert(i == n && parent_stack[i] == tree); /* next, unwind stack until note_tree_consolidate() is done */ while (i > 0 && !note_tree_consolidate(parent_stack[i], parent_stack[i - 1], GET_NIBBLE(i - 1, entry->key_sha1))) i--; } /* Free the entire notes data contained in the given tree */ static void note_tree_free(struct int_node *tree) { unsigned int i; for (i = 0; i < 16; i++) { void *p = tree->a[i]; switch (GET_PTR_TYPE(p)) { case PTR_TYPE_INTERNAL: note_tree_free(CLR_PTR_TYPE(p)); /* fall through */ case PTR_TYPE_NOTE: case PTR_TYPE_SUBTREE: free(CLR_PTR_TYPE(p)); } } } /* * Convert a partial SHA1 hex string to the corresponding partial SHA1 value. * - hex - Partial SHA1 segment in ASCII hex format * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40 * - sha1 - Partial SHA1 value is written here * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)). * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2). * Pads sha1 with NULs up to sha1_len (not included in returned length). */ static int get_sha1_hex_segment(const char *hex, unsigned int hex_len, unsigned char *sha1, unsigned int sha1_len) { unsigned int i, len = hex_len >> 1; if (hex_len % 2 != 0 || len > sha1_len) return -1; for (i = 0; i < len; i++) { unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]); if (val & ~0xff) return -1; *sha1++ = val; hex += 2; } for (; i < sha1_len; i++) *sha1++ = 0; return len; } static int non_note_cmp(const struct non_note *a, const struct non_note *b) { return strcmp(a->path, b->path); } static void add_non_note(struct notes_tree *t, const char *path, unsigned int mode, const unsigned char *sha1) { struct non_note *p = t->prev_non_note, *n; n = (struct non_note *) xmalloc(sizeof(struct non_note)); n->next = NULL; n->path = xstrdup(path); n->mode = mode; hashcpy(n->sha1, sha1); t->prev_non_note = n; if (!t->first_non_note) { t->first_non_note = n; return; } if (non_note_cmp(p, n) < 0) ; /* do nothing */ else if (non_note_cmp(t->first_non_note, n) <= 0) p = t->first_non_note; else { /* n sorts before t->first_non_note */ n->next = t->first_non_note; t->first_non_note = n; return; } /* n sorts equal or after p */ while (p->next && non_note_cmp(p->next, n) <= 0) p = p->next; if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */ assert(strcmp(p->path, n->path) == 0); p->mode = n->mode; hashcpy(p->sha1, n->sha1); free(n); t->prev_non_note = p; return; } /* n sorts between p and p->next */ n->next = p->next; p->next = n; } static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, struct int_node *node, unsigned int n) { unsigned char object_sha1[20]; unsigned int prefix_len; void *buf; struct tree_desc desc; struct name_entry entry; int len, path_len; unsigned char type; struct leaf_node *l; buf = fill_tree_descriptor(&desc, subtree->val_sha1); if (!buf) die("Could not read %s for notes-index", sha1_to_hex(subtree->val_sha1)); prefix_len = subtree->key_sha1[19]; assert(prefix_len * 2 >= n); memcpy(object_sha1, subtree->key_sha1, prefix_len); while (tree_entry(&desc, &entry)) { path_len = strlen(entry.path); len = get_sha1_hex_segment(entry.path, path_len, object_sha1 + prefix_len, 20 - prefix_len); if (len < 0) goto handle_non_note; /* entry.path is not a SHA1 */ len += prefix_len; /* * If object SHA1 is complete (len == 20), assume note object * If object SHA1 is incomplete (len < 20), and current * component consists of 2 hex chars, assume note subtree */ if (len <= 20) { type = PTR_TYPE_NOTE; l = (struct leaf_node *) xcalloc(sizeof(struct leaf_node), 1); hashcpy(l->key_sha1, object_sha1); hashcpy(l->val_sha1, entry.sha1); if (len < 20) { if (!S_ISDIR(entry.mode) || path_len != 2) goto handle_non_note; /* not subtree */ l->key_sha1[19] = (unsigned char) len; type = PTR_TYPE_SUBTREE; } note_tree_insert(t, node, n, l, type, combine_notes_concatenate); } continue; handle_non_note: /* * Determine full path for this non-note entry: * The filename is already found in entry.path, but the * directory part of the path must be deduced from the subtree * containing this entry. We assume here that the overall notes * tree follows a strict byte-based progressive fanout * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not * e.g. 4/36 fanout). This means that if a non-note is found at * path "dead/beef", the following code will register it as * being found on "de/ad/beef". * On the other hand, if you use such non-obvious non-note * paths in the middle of a notes tree, you deserve what's * coming to you ;). Note that for non-notes that are not * SHA1-like at the top level, there will be no problems. * * To conclude, it is strongly advised to make sure non-notes * have at least one non-hex character in the top-level path * component. */ { char non_note_path[PATH_MAX]; char *p = non_note_path; const char *q = sha1_to_hex(subtree->key_sha1); int i; for (i = 0; i < prefix_len; i++) { *p++ = *q++; *p++ = *q++; *p++ = '/'; } strcpy(p, entry.path); add_non_note(t, non_note_path, entry.mode, entry.sha1); } } free(buf); } /* * Determine optimal on-disk fanout for this part of the notes tree * * Given a (sub)tree and the level in the internal tree structure, determine * whether or not the given existing fanout should be expanded for this * (sub)tree. * * Values of the 'fanout' variable: * - 0: No fanout (all notes are stored directly in the root notes tree) * - 1: 2/38 fanout * - 2: 2/2/36 fanout * - 3: 2/2/2/34 fanout * etc. */ static unsigned char determine_fanout(struct int_node *tree, unsigned char n, unsigned char fanout) { /* * The following is a simple heuristic that works well in practice: * For each even-numbered 16-tree level (remember that each on-disk * fanout level corresponds to _two_ 16-tree levels), peek at all 16 * entries at that tree level. If all of them are either int_nodes or * subtree entries, then there are likely plenty of notes below this * level, so we return an incremented fanout. */ unsigned int i; if ((n % 2) || (n > 2 * fanout)) return fanout; for (i = 0; i < 16; i++) { switch (GET_PTR_TYPE(tree->a[i])) { case PTR_TYPE_SUBTREE: case PTR_TYPE_INTERNAL: continue; default: return fanout; } } return fanout + 1; } static void construct_path_with_fanout(const unsigned char *sha1, unsigned char fanout, char *path) { unsigned int i = 0, j = 0; const char *hex_sha1 = sha1_to_hex(sha1); assert(fanout < 20); while (fanout) { path[i++] = hex_sha1[j++]; path[i++] = hex_sha1[j++]; path[i++] = '/'; fanout--; } strcpy(path + i, hex_sha1 + j); } static int for_each_note_helper(struct notes_tree *t, struct int_node *tree, unsigned char n, unsigned char fanout, int flags, each_note_fn fn, void *cb_data) { unsigned int i; void *p; int ret = 0; struct leaf_node *l; static char path[40 + 19 + 1]; /* hex SHA1 + 19 * '/' + NUL */ fanout = determine_fanout(tree, n, fanout); for (i = 0; i < 16; i++) { redo: p = tree->a[i]; switch (GET_PTR_TYPE(p)) { case PTR_TYPE_INTERNAL: /* recurse into int_node */ ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1, fanout, flags, fn, cb_data); break; case PTR_TYPE_SUBTREE: l = (struct leaf_node *) CLR_PTR_TYPE(p); /* * Subtree entries in the note tree represent parts of * the note tree that have not yet been explored. There * is a direct relationship between subtree entries at * level 'n' in the tree, and the 'fanout' variable: * Subtree entries at level 'n <= 2 * fanout' should be * preserved, since they correspond exactly to a fanout * directory in the on-disk structure. However, subtree * entries at level 'n > 2 * fanout' should NOT be * preserved, but rather consolidated into the above * notes tree level. We achieve this by unconditionally * unpacking subtree entries that exist below the * threshold level at 'n = 2 * fanout'. */ if (n <= 2 * fanout && flags & FOR_EACH_NOTE_YIELD_SUBTREES) { /* invoke callback with subtree */ unsigned int path_len = l->key_sha1[19] * 2 + fanout; assert(path_len < 40 + 19); construct_path_with_fanout(l->key_sha1, fanout, path); /* Create trailing slash, if needed */ if (path[path_len - 1] != '/') path[path_len++] = '/'; path[path_len] = '\0'; ret = fn(l->key_sha1, l->val_sha1, path, cb_data); } if (n > fanout * 2 || !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) { /* unpack subtree and resume traversal */ tree->a[i] = NULL; load_subtree(t, l, tree, n); free(l); goto redo; } break; case PTR_TYPE_NOTE: l = (struct leaf_node *) CLR_PTR_TYPE(p); construct_path_with_fanout(l->key_sha1, fanout, path); ret = fn(l->key_sha1, l->val_sha1, path, cb_data); break; } if (ret) return ret; } return 0; } struct tree_write_stack { struct tree_write_stack *next; struct strbuf buf; char path[2]; /* path to subtree in next, if any */ }; static inline int matches_tree_write_stack(struct tree_write_stack *tws, const char *full_path) { return full_path[0] == tws->path[0] && full_path[1] == tws->path[1] && full_path[2] == '/'; } static void write_tree_entry(struct strbuf *buf, unsigned int mode, const char *path, unsigned int path_len, const unsigned char *sha1) { strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0'); strbuf_add(buf, sha1, 20); } static void tree_write_stack_init_subtree(struct tree_write_stack *tws, const char *path) { struct tree_write_stack *n; assert(!tws->next); assert(tws->path[0] == '\0' && tws->path[1] == '\0'); n = (struct tree_write_stack *) xmalloc(sizeof(struct tree_write_stack)); n->next = NULL; strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */ n->path[0] = n->path[1] = '\0'; tws->next = n; tws->path[0] = path[0]; tws->path[1] = path[1]; } static int tree_write_stack_finish_subtree(struct tree_write_stack *tws) { int ret; struct tree_write_stack *n = tws->next; unsigned char s[20]; if (n) { ret = tree_write_stack_finish_subtree(n); if (ret) return ret; ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s); if (ret) return ret; strbuf_release(&n->buf); free(n); tws->next = NULL; write_tree_entry(&tws->buf, 040000, tws->path, 2, s); tws->path[0] = tws->path[1] = '\0'; } return 0; } static int write_each_note_helper(struct tree_write_stack *tws, const char *path, unsigned int mode, const unsigned char *sha1) { size_t path_len = strlen(path); unsigned int n = 0; int ret; /* Determine common part of tree write stack */ while (tws && 3 * n < path_len && matches_tree_write_stack(tws, path + 3 * n)) { n++; tws = tws->next; } /* tws point to last matching tree_write_stack entry */ ret = tree_write_stack_finish_subtree(tws); if (ret) return ret; /* Start subtrees needed to satisfy path */ while (3 * n + 2 < path_len && path[3 * n + 2] == '/') { tree_write_stack_init_subtree(tws, path + 3 * n); n++; tws = tws->next; } /* There should be no more directory components in the given path */ assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL); /* Finally add given entry to the current tree object */ write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n), sha1); return 0; } struct write_each_note_data { struct tree_write_stack *root; struct non_note *next_non_note; }; static int write_each_non_note_until(const char *note_path, struct write_each_note_data *d) { struct non_note *n = d->next_non_note; int cmp, ret; while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) { if (note_path && cmp == 0) ; /* do nothing, prefer note to non-note */ else { ret = write_each_note_helper(d->root, n->path, n->mode, n->sha1); if (ret) return ret; } n = n->next; } d->next_non_note = n; return 0; } static int write_each_note(const unsigned char *object_sha1, const unsigned char *note_sha1, char *note_path, void *cb_data) { struct write_each_note_data *d = (struct write_each_note_data *) cb_data; size_t note_path_len = strlen(note_path); unsigned int mode = 0100644; if (note_path[note_path_len - 1] == '/') { /* subtree entry */ note_path_len--; note_path[note_path_len] = '\0'; mode = 040000; } assert(note_path_len <= 40 + 19); /* Weave non-note entries into note entries */ return write_each_non_note_until(note_path, d) || write_each_note_helper(d->root, note_path, mode, note_sha1); } struct note_delete_list { struct note_delete_list *next; const unsigned char *sha1; }; static int prune_notes_helper(const unsigned char *object_sha1, const unsigned char *note_sha1, char *note_path, void *cb_data) { struct note_delete_list **l = (struct note_delete_list **) cb_data; struct note_delete_list *n; if (has_sha1_file(object_sha1)) return 0; /* nothing to do for this note */ /* failed to find object => prune this note */ n = (struct note_delete_list *) xmalloc(sizeof(*n)); n->next = *l; n->sha1 = object_sha1; *l = n; return 0; } int combine_notes_concatenate(unsigned char *cur_sha1, const unsigned char *new_sha1) { char *cur_msg = NULL, *new_msg = NULL, *buf; unsigned long cur_len, new_len, buf_len; enum object_type cur_type, new_type; int ret; /* read in both note blob objects */ if (!is_null_sha1(new_sha1)) new_msg = read_sha1_file(new_sha1, &new_type, &new_len); if (!new_msg || !new_len || new_type != OBJ_BLOB) { free(new_msg); return 0; } if (!is_null_sha1(cur_sha1)) cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len); if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) { free(cur_msg); free(new_msg); hashcpy(cur_sha1, new_sha1); return 0; } /* we will separate the notes by a newline anyway */ if (cur_msg[cur_len - 1] == '\n') cur_len--; /* concatenate cur_msg and new_msg into buf */ buf_len = cur_len + 1 + new_len; buf = (char *) xmalloc(buf_len); memcpy(buf, cur_msg, cur_len); buf[cur_len] = '\n'; memcpy(buf + cur_len + 1, new_msg, new_len); free(cur_msg); free(new_msg); /* create a new blob object from buf */ ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1); free(buf); return ret; } int combine_notes_overwrite(unsigned char *cur_sha1, const unsigned char *new_sha1) { hashcpy(cur_sha1, new_sha1); return 0; } int combine_notes_ignore(unsigned char *cur_sha1, const unsigned char *new_sha1) { return 0; } static int string_list_add_one_ref(const char *path, const unsigned char *sha1, int flag, void *cb) { struct string_list *refs = cb; if (!unsorted_string_list_has_string(refs, path)) string_list_append(path, refs); return 0; } void string_list_add_refs_by_glob(struct string_list *list, const char *glob) { if (has_glob_specials(glob)) { for_each_glob_ref(string_list_add_one_ref, glob, list); } else { unsigned char sha1[20]; if (get_sha1(glob, sha1)) warning("notes ref %s is invalid", glob); if (!unsorted_string_list_has_string(list, glob)) string_list_append(glob, list); } } void string_list_add_refs_from_colon_sep(struct string_list *list, const char *globs) { struct strbuf globbuf = STRBUF_INIT; struct strbuf **split; int i; strbuf_addstr(&globbuf, globs); split = strbuf_split(&globbuf, ':'); for (i = 0; split[i]; i++) { if (!split[i]->len) continue; if (split[i]->buf[split[i]->len-1] == ':') strbuf_setlen(split[i], split[i]->len-1); string_list_add_refs_by_glob(list, split[i]->buf); } strbuf_list_free(split); strbuf_release(&globbuf); } static int string_list_add_refs_from_list(struct string_list_item *item, void *cb) { struct string_list *list = cb; string_list_add_refs_by_glob(list, item->string); return 0; } static int notes_display_config(const char *k, const char *v, void *cb) { int *load_refs = cb; if (*load_refs && !strcmp(k, "notes.displayref")) { if (!v) config_error_nonbool(k); string_list_add_refs_by_glob(&display_notes_refs, v); } return 0; } static const char *default_notes_ref(void) { const char *notes_ref = NULL; if (!notes_ref) notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT); if (!notes_ref) notes_ref = notes_ref_name; /* value of core.notesRef config */ if (!notes_ref) notes_ref = GIT_NOTES_DEFAULT_REF; return notes_ref; } void init_notes(struct notes_tree *t, const char *notes_ref, combine_notes_fn combine_notes, int flags) { unsigned char sha1[20], object_sha1[20]; unsigned mode; struct leaf_node root_tree; if (!t) t = &default_notes_tree; assert(!t->initialized); if (!notes_ref) notes_ref = default_notes_ref(); if (!combine_notes) combine_notes = combine_notes_concatenate; t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1); t->first_non_note = NULL; t->prev_non_note = NULL; t->ref = notes_ref ? xstrdup(notes_ref) : NULL; t->combine_notes = combine_notes; t->initialized = 1; t->dirty = 0; if (flags & NOTES_INIT_EMPTY || !notes_ref || read_ref(notes_ref, object_sha1)) return; if (get_tree_entry(object_sha1, "", sha1, &mode)) die("Failed to read notes tree referenced by %s (%s)", notes_ref, object_sha1); hashclr(root_tree.key_sha1); hashcpy(root_tree.val_sha1, sha1); load_subtree(t, &root_tree, t->root, 0); } struct load_notes_cb_data { int counter; struct notes_tree **trees; }; static int load_one_display_note_ref(struct string_list_item *item, void *cb_data) { struct load_notes_cb_data *c = cb_data; struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree)); init_notes(t, item->string, combine_notes_ignore, 0); c->trees[c->counter++] = t; return 0; } struct notes_tree **load_notes_trees(struct string_list *refs) { struct notes_tree **trees; struct load_notes_cb_data cb_data; trees = xmalloc((refs->nr+1) * sizeof(struct notes_tree *)); cb_data.counter = 0; cb_data.trees = trees; for_each_string_list(load_one_display_note_ref, refs, &cb_data); trees[cb_data.counter] = NULL; return trees; } void init_display_notes(struct display_notes_opt *opt) { char *display_ref_env; int load_config_refs = 0; display_notes_refs.strdup_strings = 1; assert(!display_notes_trees); if (!opt || !opt->suppress_default_notes) { string_list_append(default_notes_ref(), &display_notes_refs); display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT); if (display_ref_env) { string_list_add_refs_from_colon_sep(&display_notes_refs, display_ref_env); load_config_refs = 0; } else load_config_refs = 1; } git_config(notes_display_config, &load_config_refs); if (opt && opt->extra_notes_refs) for_each_string_list(string_list_add_refs_from_list, opt->extra_notes_refs, &display_notes_refs); display_notes_trees = load_notes_trees(&display_notes_refs); string_list_clear(&display_notes_refs, 0); } void add_note(struct notes_tree *t, const unsigned char *object_sha1, const unsigned char *note_sha1, combine_notes_fn combine_notes) { struct leaf_node *l; if (!t) t = &default_notes_tree; assert(t->initialized); t->dirty = 1; if (!combine_notes) combine_notes = t->combine_notes; l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node)); hashcpy(l->key_sha1, object_sha1); hashcpy(l->val_sha1, note_sha1); note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes); } void remove_note(struct notes_tree *t, const unsigned char *object_sha1) { struct leaf_node l; if (!t) t = &default_notes_tree; assert(t->initialized); t->dirty = 1; hashcpy(l.key_sha1, object_sha1); hashclr(l.val_sha1); note_tree_remove(t, t->root, 0, &l); } const unsigned char *get_note(struct notes_tree *t, const unsigned char *object_sha1) { struct leaf_node *found; if (!t) t = &default_notes_tree; assert(t->initialized); found = note_tree_find(t, t->root, 0, object_sha1); return found ? found->val_sha1 : NULL; } int for_each_note(struct notes_tree *t, int flags, each_note_fn fn, void *cb_data) { if (!t) t = &default_notes_tree; assert(t->initialized); return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data); } int write_notes_tree(struct notes_tree *t, unsigned char *result) { struct tree_write_stack root; struct write_each_note_data cb_data; int ret; if (!t) t = &default_notes_tree; assert(t->initialized); /* Prepare for traversal of current notes tree */ root.next = NULL; /* last forward entry in list is grounded */ strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */ root.path[0] = root.path[1] = '\0'; cb_data.root = &root; cb_data.next_non_note = t->first_non_note; /* Write tree objects representing current notes tree */ ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES | FOR_EACH_NOTE_YIELD_SUBTREES, write_each_note, &cb_data) || write_each_non_note_until(NULL, &cb_data) || tree_write_stack_finish_subtree(&root) || write_sha1_file(root.buf.buf, root.buf.len, tree_type, result); strbuf_release(&root.buf); return ret; } void prune_notes(struct notes_tree *t) { struct note_delete_list *l = NULL; if (!t) t = &default_notes_tree; assert(t->initialized); for_each_note(t, 0, prune_notes_helper, &l); while (l) { remove_note(t, l->sha1); l = l->next; } } void free_notes(struct notes_tree *t) { if (!t) t = &default_notes_tree; if (t->root) note_tree_free(t->root); free(t->root); while (t->first_non_note) { t->prev_non_note = t->first_non_note->next; free(t->first_non_note->path); free(t->first_non_note); t->first_non_note = t->prev_non_note; } free(t->ref); memset(t, 0, sizeof(struct notes_tree)); } void format_note(struct notes_tree *t, const unsigned char *object_sha1, struct strbuf *sb, const char *output_encoding, int flags) { static const char utf8[] = "utf-8"; const unsigned char *sha1; char *msg, *msg_p; unsigned long linelen, msglen; enum object_type type; if (!t) t = &default_notes_tree; if (!t->initialized) init_notes(t, NULL, NULL, 0); sha1 = get_note(t, object_sha1); if (!sha1) return; if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen || type != OBJ_BLOB) { free(msg); return; } if (output_encoding && *output_encoding && strcmp(utf8, output_encoding)) { char *reencoded = reencode_string(msg, output_encoding, utf8); if (reencoded) { free(msg); msg = reencoded; msglen = strlen(msg); } } /* we will end the annotation by a newline anyway */ if (msglen && msg[msglen - 1] == '\n') msglen--; if (flags & NOTES_SHOW_HEADER) { const char *ref = t->ref; if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) { strbuf_addstr(sb, "\nNotes:\n"); } else { if (!prefixcmp(ref, "refs/")) ref += 5; if (!prefixcmp(ref, "notes/")) ref += 6; strbuf_addf(sb, "\nNotes (%s):\n", ref); } } for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) { linelen = strchrnul(msg_p, '\n') - msg_p; if (flags & NOTES_INDENT) strbuf_addstr(sb, " "); strbuf_add(sb, msg_p, linelen); strbuf_addch(sb, '\n'); } free(msg); } void format_display_notes(const unsigned char *object_sha1, struct strbuf *sb, const char *output_encoding, int flags) { int i; assert(display_notes_trees); for (i = 0; display_notes_trees[i]; i++) format_note(display_notes_trees[i], object_sha1, sb, output_encoding, flags); } int copy_note(struct notes_tree *t, const unsigned char *from_obj, const unsigned char *to_obj, int force, combine_notes_fn combine_fn) { const unsigned char *note = get_note(t, from_obj); const unsigned char *existing_note = get_note(t, to_obj); if (!force && existing_note) return 1; if (note) add_note(t, to_obj, note, combine_fn); else if (existing_note) add_note(t, to_obj, null_sha1, combine_fn); return 0; }