#ifndef HASH_H #define HASH_H #include "git-compat-util.h" #include "repository.h" #if defined(SHA1_PPC) #include "ppc/sha1.h" #elif defined(SHA1_APPLE) #include #elif defined(SHA1_OPENSSL) #include #elif defined(SHA1_DC) #include "sha1dc_git.h" #else /* SHA1_BLK */ #include "block-sha1/sha1.h" #endif #if defined(SHA256_GCRYPT) #define SHA256_NEEDS_CLONE_HELPER #include "sha256/gcrypt.h" #elif defined(SHA256_OPENSSL) #include #else #include "sha256/block/sha256.h" #endif #ifndef platform_SHA_CTX /* * platform's underlying implementation of SHA-1; could be OpenSSL, * blk_SHA, Apple CommonCrypto, etc... Note that the relevant * SHA-1 header may have already defined platform_SHA_CTX for our * own implementations like block-sha1 and ppc-sha1, so we list * the default for OpenSSL compatible SHA-1 implementations here. */ #define platform_SHA_CTX SHA_CTX #define platform_SHA1_Init SHA1_Init #define platform_SHA1_Update SHA1_Update #define platform_SHA1_Final SHA1_Final #endif #define git_SHA_CTX platform_SHA_CTX #define git_SHA1_Init platform_SHA1_Init #define git_SHA1_Update platform_SHA1_Update #define git_SHA1_Final platform_SHA1_Final #ifndef platform_SHA256_CTX #define platform_SHA256_CTX SHA256_CTX #define platform_SHA256_Init SHA256_Init #define platform_SHA256_Update SHA256_Update #define platform_SHA256_Final SHA256_Final #endif #define git_SHA256_CTX platform_SHA256_CTX #define git_SHA256_Init platform_SHA256_Init #define git_SHA256_Update platform_SHA256_Update #define git_SHA256_Final platform_SHA256_Final #ifdef platform_SHA256_Clone #define git_SHA256_Clone platform_SHA256_Clone #endif #ifdef SHA1_MAX_BLOCK_SIZE #include "compat/sha1-chunked.h" #undef git_SHA1_Update #define git_SHA1_Update git_SHA1_Update_Chunked #endif static inline void git_SHA1_Clone(git_SHA_CTX *dst, const git_SHA_CTX *src) { memcpy(dst, src, sizeof(*dst)); } #ifndef SHA256_NEEDS_CLONE_HELPER static inline void git_SHA256_Clone(git_SHA256_CTX *dst, const git_SHA256_CTX *src) { memcpy(dst, src, sizeof(*dst)); } #endif /* * Note that these constants are suitable for indexing the hash_algos array and * comparing against each other, but are otherwise arbitrary, so they should not * be exposed to the user or serialized to disk. To know whether a * git_hash_algo struct points to some usable hash function, test the format_id * field for being non-zero. Use the name field for user-visible situations and * the format_id field for fixed-length fields on disk. */ /* An unknown hash function. */ #define GIT_HASH_UNKNOWN 0 /* SHA-1 */ #define GIT_HASH_SHA1 1 /* SHA-256 */ #define GIT_HASH_SHA256 2 /* Number of algorithms supported (including unknown). */ #define GIT_HASH_NALGOS (GIT_HASH_SHA256 + 1) /* A suitably aligned type for stack allocations of hash contexts. */ union git_hash_ctx { git_SHA_CTX sha1; git_SHA256_CTX sha256; }; typedef union git_hash_ctx git_hash_ctx; typedef void (*git_hash_init_fn)(git_hash_ctx *ctx); typedef void (*git_hash_clone_fn)(git_hash_ctx *dst, const git_hash_ctx *src); typedef void (*git_hash_update_fn)(git_hash_ctx *ctx, const void *in, size_t len); typedef void (*git_hash_final_fn)(unsigned char *hash, git_hash_ctx *ctx); struct git_hash_algo { /* * The name of the algorithm, as appears in the config file and in * messages. */ const char *name; /* A four-byte version identifier, used in pack indices. */ uint32_t format_id; /* The length of the hash in binary. */ size_t rawsz; /* The length of the hash in hex characters. */ size_t hexsz; /* The block size of the hash. */ size_t blksz; /* The hash initialization function. */ git_hash_init_fn init_fn; /* The hash context cloning function. */ git_hash_clone_fn clone_fn; /* The hash update function. */ git_hash_update_fn update_fn; /* The hash finalization function. */ git_hash_final_fn final_fn; /* The OID of the empty tree. */ const struct object_id *empty_tree; /* The OID of the empty blob. */ const struct object_id *empty_blob; }; extern const struct git_hash_algo hash_algos[GIT_HASH_NALGOS]; /* * Return a GIT_HASH_* constant based on the name. Returns GIT_HASH_UNKNOWN if * the name doesn't match a known algorithm. */ int hash_algo_by_name(const char *name); /* Identical, except based on the format ID. */ int hash_algo_by_id(uint32_t format_id); /* Identical, except based on the length. */ int hash_algo_by_length(int len); /* Identical, except for a pointer to struct git_hash_algo. */ static inline int hash_algo_by_ptr(const struct git_hash_algo *p) { return p - hash_algos; } /* The length in bytes and in hex digits of an object name (SHA-1 value). */ #define GIT_SHA1_RAWSZ 20 #define GIT_SHA1_HEXSZ (2 * GIT_SHA1_RAWSZ) /* The block size of SHA-1. */ #define GIT_SHA1_BLKSZ 64 /* The length in bytes and in hex digits of an object name (SHA-256 value). */ #define GIT_SHA256_RAWSZ 32 #define GIT_SHA256_HEXSZ (2 * GIT_SHA256_RAWSZ) /* The block size of SHA-256. */ #define GIT_SHA256_BLKSZ 64 /* The length in byte and in hex digits of the largest possible hash value. */ #define GIT_MAX_RAWSZ GIT_SHA256_RAWSZ #define GIT_MAX_HEXSZ GIT_SHA256_HEXSZ /* The largest possible block size for any supported hash. */ #define GIT_MAX_BLKSZ GIT_SHA256_BLKSZ struct object_id { unsigned char hash[GIT_MAX_RAWSZ]; }; #define the_hash_algo the_repository->hash_algo extern const struct object_id null_oid; static inline int hashcmp(const unsigned char *sha1, const unsigned char *sha2) { /* * Teach the compiler that there are only two possibilities of hash size * here, so that it can optimize for this case as much as possible. */ if (the_hash_algo->rawsz == GIT_MAX_RAWSZ) return memcmp(sha1, sha2, GIT_MAX_RAWSZ); return memcmp(sha1, sha2, GIT_SHA1_RAWSZ); } static inline int oidcmp(const struct object_id *oid1, const struct object_id *oid2) { return hashcmp(oid1->hash, oid2->hash); } static inline int hasheq(const unsigned char *sha1, const unsigned char *sha2) { /* * We write this here instead of deferring to hashcmp so that the * compiler can properly inline it and avoid calling memcmp. */ if (the_hash_algo->rawsz == GIT_MAX_RAWSZ) return !memcmp(sha1, sha2, GIT_MAX_RAWSZ); return !memcmp(sha1, sha2, GIT_SHA1_RAWSZ); } static inline int oideq(const struct object_id *oid1, const struct object_id *oid2) { return hasheq(oid1->hash, oid2->hash); } static inline int is_null_oid(const struct object_id *oid) { return oideq(oid, &null_oid); } static inline void hashcpy(unsigned char *sha_dst, const unsigned char *sha_src) { memcpy(sha_dst, sha_src, the_hash_algo->rawsz); } static inline void oidcpy(struct object_id *dst, const struct object_id *src) { memcpy(dst->hash, src->hash, GIT_MAX_RAWSZ); } static inline struct object_id *oiddup(const struct object_id *src) { struct object_id *dst = xmalloc(sizeof(struct object_id)); oidcpy(dst, src); return dst; } static inline void hashclr(unsigned char *hash) { memset(hash, 0, the_hash_algo->rawsz); } static inline void oidclr(struct object_id *oid) { memset(oid->hash, 0, GIT_MAX_RAWSZ); } static inline void oidread(struct object_id *oid, const unsigned char *hash) { memcpy(oid->hash, hash, the_hash_algo->rawsz); } static inline int is_empty_blob_sha1(const unsigned char *sha1) { return hasheq(sha1, the_hash_algo->empty_blob->hash); } static inline int is_empty_blob_oid(const struct object_id *oid) { return oideq(oid, the_hash_algo->empty_blob); } static inline int is_empty_tree_sha1(const unsigned char *sha1) { return hasheq(sha1, the_hash_algo->empty_tree->hash); } static inline int is_empty_tree_oid(const struct object_id *oid) { return oideq(oid, the_hash_algo->empty_tree); } const char *empty_tree_oid_hex(void); const char *empty_blob_oid_hex(void); #endif