/* * Copyright (c) 2005, Jon Seymour * * For more information about epoch theory on which this module is based, * refer to http://blackcubes.dyndns.org/epoch/. That web page defines * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales * for some of the algorithms used here. * */ #include #include // provides arbitrary precision integers // required to accurately represent fractional //mass #include "cache.h" #include "commit.h" #include "epoch.h" struct fraction { BIGNUM numerator; BIGNUM denominator; }; #define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next) static BN_CTX *context = NULL; static struct fraction *one = NULL; static struct fraction *zero = NULL; static BN_CTX *get_BN_CTX() { if (!context) { context = BN_CTX_new(); } return context; } static struct fraction *new_zero() { struct fraction *result = xmalloc(sizeof(*result)); BN_init(&result->numerator); BN_init(&result->denominator); BN_zero(&result->numerator); BN_one(&result->denominator); return result; } static void clear_fraction(struct fraction *fraction) { BN_clear(&fraction->numerator); BN_clear(&fraction->denominator); } static struct fraction *divide(struct fraction *result, struct fraction *fraction, int divisor) { BIGNUM bn_divisor; BN_init(&bn_divisor); BN_set_word(&bn_divisor, divisor); BN_copy(&result->numerator, &fraction->numerator); BN_mul(&result->denominator, &fraction->denominator, &bn_divisor, get_BN_CTX()); BN_clear(&bn_divisor); return result; } static struct fraction *init_fraction(struct fraction *fraction) { BN_init(&fraction->numerator); BN_init(&fraction->denominator); BN_zero(&fraction->numerator); BN_one(&fraction->denominator); return fraction; } static struct fraction *get_one() { if (!one) { one = new_zero(); BN_one(&one->numerator); } return one; } static struct fraction *get_zero() { if (!zero) { zero = new_zero(); } return zero; } static struct fraction *copy(struct fraction *to, struct fraction *from) { BN_copy(&to->numerator, &from->numerator); BN_copy(&to->denominator, &from->denominator); return to; } static struct fraction *add(struct fraction *result, struct fraction *left, struct fraction *right) { BIGNUM a, b, gcd; BN_init(&a); BN_init(&b); BN_init(&gcd); BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX()); BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX()); BN_mul(&result->denominator, &left->denominator, &right->denominator, get_BN_CTX()); BN_add(&result->numerator, &a, &b); BN_gcd(&gcd, &result->denominator, &result->numerator, get_BN_CTX()); BN_div(&result->denominator, NULL, &result->denominator, &gcd, get_BN_CTX()); BN_div(&result->numerator, NULL, &result->numerator, &gcd, get_BN_CTX()); BN_clear(&a); BN_clear(&b); BN_clear(&gcd); return result; } static int compare(struct fraction *left, struct fraction *right) { BIGNUM a, b; int result; BN_init(&a); BN_init(&b); BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX()); BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX()); result = BN_cmp(&a, &b); BN_clear(&a); BN_clear(&b); return result; } struct mass_counter { struct fraction seen; struct fraction pending; }; static struct mass_counter *new_mass_counter(struct commit *commit, struct fraction *pending) { struct mass_counter *mass_counter = xmalloc(sizeof(*mass_counter)); memset(mass_counter, 0, sizeof(*mass_counter)); init_fraction(&mass_counter->seen); init_fraction(&mass_counter->pending); copy(&mass_counter->pending, pending); copy(&mass_counter->seen, get_zero()); if (commit->object.util) { die("multiple attempts to initialize mass counter for %s\n", sha1_to_hex(commit->object.sha1)); } commit->object.util = mass_counter; return mass_counter; } static void free_mass_counter(struct mass_counter *counter) { clear_fraction(&counter->seen); clear_fraction(&counter->pending); free(counter); } // // Finds the base commit of a list of commits. // // One property of the commit being searched for is that every commit reachable // from the base commit is reachable from the commits in the starting list only // via paths that include the base commit. // // This algorithm uses a conservation of mass approach to find the base commit. // // We start by injecting one unit of mass into the graph at each // of the commits in the starting list. Injecting mass into a commit // is achieved by adding to its pending mass counter and, if it is not already // enqueued, enqueuing the commit in a list of pending commits, in latest // commit date first order. // // The algorithm then preceeds to visit each commit in the pending queue. // Upon each visit, the pending mass is added to the mass already seen for that // commit and then divided into N equal portions, where N is the number of // parents of the commit being visited. The divided portions are then injected // into each of the parents. // // The algorithm continues until we discover a commit which has seen all the // mass originally injected or until we run out of things to do. // // If we find a commit that has seen all the original mass, we have found // the common base of all the commits in the starting list. // // The algorithm does _not_ depend on accurate timestamps for correct operation. // However, reasonably sane (e.g. non-random) timestamps are required in order // to prevent an exponential performance characteristic. The occasional // timestamp inaccuracy will not dramatically affect performance but may // result in more nodes being processed than strictly necessary. // // This procedure sets *boundary to the address of the base commit. It returns // non-zero if, and only if, there was a problem parsing one of the // commits discovered during the traversal. // static int find_base_for_list(struct commit_list *list, struct commit **boundary) { int ret = 0; struct commit_list *cleaner = NULL; struct commit_list *pending = NULL; *boundary = NULL; struct fraction injected; init_fraction(&injected); for (; list; list = list->next) { struct commit *item = list->item; if (item->object.util) { die("%s:%d:%s: logic error: this should not have happened - commit %s\n", __FILE__, __LINE__, __FUNCTION__, sha1_to_hex(item->object.sha1)); } new_mass_counter(list->item, get_one()); add(&injected, &injected, get_one()); commit_list_insert(list->item, &cleaner); commit_list_insert(list->item, &pending); } while (!*boundary && pending && !ret) { struct commit *latest = pop_commit(&pending); struct mass_counter *latest_node = (struct mass_counter *) latest->object.util; if ((ret = parse_commit(latest))) continue; add(&latest_node->seen, &latest_node->seen, &latest_node->pending); int num_parents = count_parents(latest); if (num_parents) { struct fraction distribution; struct commit_list *parents; divide(init_fraction(&distribution), &latest_node->pending, num_parents); for (parents = latest->parents; parents; parents = parents->next) { struct commit *parent = parents->item; struct mass_counter *parent_node = (struct mass_counter *) parent->object.util; if (!parent_node) { parent_node = new_mass_counter(parent, &distribution); insert_by_date(&pending, parent); commit_list_insert(parent, &cleaner); } else { if (!compare(&parent_node->pending, get_zero())) { insert_by_date(&pending, parent); } add(&parent_node->pending, &parent_node->pending, &distribution); } } clear_fraction(&distribution); } if (!compare(&latest_node->seen, &injected)) { *boundary = latest; } copy(&latest_node->pending, get_zero()); } while (cleaner) { struct commit *next = pop_commit(&cleaner); free_mass_counter((struct mass_counter *) next->object.util); next->object.util = NULL; } if (pending) free_commit_list(pending); clear_fraction(&injected); return ret; } // // Finds the base of an minimal, non-linear epoch, headed at head, by // applying the find_base_for_list to a list consisting of the parents // static int find_base(struct commit *head, struct commit **boundary) { int ret = 0; struct commit_list *pending = NULL; struct commit_list *next; for (next = head->parents; next; next = next->next) { commit_list_insert(next->item, &pending); } ret = find_base_for_list(pending, boundary); free_commit_list(pending); return ret; } // // This procedure traverses to the boundary of the first epoch in the epoch // sequence of the epoch headed at head_of_epoch. This is either the end of // the maximal linear epoch or the base of a minimal non-linear epoch. // // The queue of pending nodes is sorted in reverse date order and each node // is currently in the queue at most once. // static int find_next_epoch_boundary(struct commit *head_of_epoch, struct commit **boundary) { int ret; struct commit *item = head_of_epoch; ret = parse_commit(item); if (ret) return ret; if (HAS_EXACTLY_ONE_PARENT(item)) { // we are at the start of a maximimal linear epoch .. traverse to the end // traverse to the end of a maximal linear epoch while (HAS_EXACTLY_ONE_PARENT(item) && !ret) { item = item->parents->item; ret = parse_commit(item); } *boundary = item; } else { // otherwise, we are at the start of a minimal, non-linear // epoch - find the common base of all parents. ret = find_base(item, boundary); } return ret; } // // Returns non-zero if parent is known to be a parent of child. // static int is_parent_of(struct commit *parent, struct commit *child) { struct commit_list *parents; for (parents = child->parents; parents; parents = parents->next) { if (!memcmp(parent->object.sha1, parents->item->object.sha1, sizeof(parents->item->object.sha1))) return 1; } return 0; } // // Pushes an item onto the merge order stack. If the top of the stack is // marked as being a possible "break", we check to see whether it actually // is a break. // static void push_onto_merge_order_stack(struct commit_list **stack, struct commit *item) { struct commit_list *top = *stack; if (top && (top->item->object.flags & DISCONTINUITY)) { if (is_parent_of(top->item, item)) { top->item->object.flags &= ~DISCONTINUITY; } } commit_list_insert(item, stack); } // // Marks all interesting, visited commits reachable from this commit // as uninteresting. We stop recursing when we reach the epoch boundary, // an unvisited node or a node that has already been marking uninteresting. // This doesn't actually mark all ancestors between the start node and the // epoch boundary uninteresting, but does ensure that they will // eventually be marked uninteresting when the main sort_first_epoch // traversal eventually reaches them. // static void mark_ancestors_uninteresting(struct commit *commit) { unsigned int flags = commit->object.flags; int visited = flags & VISITED; int boundary = flags & BOUNDARY; int uninteresting = flags & UNINTERESTING; commit->object.flags |= UNINTERESTING; if (uninteresting || boundary || !visited) { return; // we only need to recurse if // we are not on the boundary, and, // we have not already been marked uninteresting, and, // we have already been visited. // // the main sort_first_epoch traverse will // mark unreachable all uninteresting, unvisited parents // as they are visited so there is no need to duplicate // that traversal here. // // similarly, if we are already marked uninteresting // then either all ancestors have already been marked // uninteresting or will be once the sort_first_epoch // traverse reaches them. // } struct commit_list *next; for (next = commit->parents; next; next = next->next) mark_ancestors_uninteresting(next->item); } // // Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head // into merge order. // static void sort_first_epoch(struct commit *head, struct commit_list **stack) { struct commit_list *parents; struct commit_list *reversed_parents = NULL; head->object.flags |= VISITED; // // parse_commit builds the parent list in reverse order with respect to the order of // the git-commit-tree arguments. // // so we need to reverse this list to output the oldest (or most "local") commits last. // for (parents = head->parents; parents; parents = parents->next) commit_list_insert(parents->item, &reversed_parents); // // todo: by sorting the parents in a different order, we can alter the // merge order to show contemporaneous changes in parallel branches // occurring after "local" changes. This is useful for a developer // when a developer wants to see all changes that were incorporated // into the same merge as her own changes occur after her own // changes. // while (reversed_parents) { struct commit *parent = pop_commit(&reversed_parents); if (head->object.flags & UNINTERESTING) { // propagates the uninteresting bit to // all parents. if we have already visited // this parent, then the uninteresting bit // will be propagated to each reachable // commit that is still not marked uninteresting // and won't otherwise be reached. mark_ancestors_uninteresting(parent); } if (!(parent->object.flags & VISITED)) { if (parent->object.flags & BOUNDARY) { if (*stack) { die("something else is on the stack - %s\n", sha1_to_hex((*stack)->item->object.sha1)); } push_onto_merge_order_stack(stack, parent); parent->object.flags |= VISITED; } else { sort_first_epoch(parent, stack); if (reversed_parents) { // // this indicates a possible discontinuity // it may not be be actual discontinuity if // the head of parent N happens to be the tail // of parent N+1 // // the next push onto the stack will resolve the // question // (*stack)->item->object.flags |= DISCONTINUITY; } } } } push_onto_merge_order_stack(stack, head); } // // Emit the contents of the stack. // // The stack is freed and replaced by NULL. // // Sets the return value to STOP if no further output should be generated. // static int emit_stack(struct commit_list **stack, emitter_func emitter) { unsigned int seen = 0; int action = CONTINUE; while (*stack && (action != STOP)) { struct commit *next = pop_commit(stack); seen |= next->object.flags; if (*stack) { action = (*emitter) (next); } } if (*stack) { free_commit_list(*stack); *stack = NULL; } return (action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE; } // // Sorts an arbitrary epoch into merge order by sorting each epoch // of its epoch sequence into order. // // Note: this algorithm currently leaves traces of its execution in the // object flags of nodes it discovers. This should probably be fixed. // static int sort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter) { struct commit *next = head_of_epoch; int ret = 0; int action = CONTINUE; ret = parse_commit(head_of_epoch); while (next && next->parents && !ret && (action != STOP)) { struct commit *base = NULL; if ((ret = find_next_epoch_boundary(next, &base))) return ret; next->object.flags |= BOUNDARY; if (base) { base->object.flags |= BOUNDARY; } if (HAS_EXACTLY_ONE_PARENT(next)) { while (HAS_EXACTLY_ONE_PARENT(next) && (action != STOP) && !ret) { if (next->object.flags & UNINTERESTING) { action = STOP; } else { action = (*emitter) (next); } if (action != STOP) { next = next->parents->item; ret = parse_commit(next); } } } else { struct commit_list *stack = NULL; sort_first_epoch(next, &stack); action = emit_stack(&stack, emitter); next = base; } } if (next && (action != STOP) && !ret) { (*emitter) (next); } return ret; } // // Sorts the nodes reachable from a starting list in merge order, we // first find the base for the starting list and then sort all nodes in this // subgraph using the sort_first_epoch algorithm. Once we have reached the base // we can continue sorting using sort_in_merge_order. // int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter) { struct commit_list *stack = NULL; struct commit *base; int ret = 0; int action = CONTINUE; struct commit_list *reversed = NULL; for (; list; list = list->next) { struct commit *next = list->item; if (!(next->object.flags & UNINTERESTING)) { if (next->object.flags & DUPCHECK) { fprintf(stderr, "%s: duplicate commit %s ignored\n", __FUNCTION__, sha1_to_hex(next->object.sha1)); } else { next->object.flags |= DUPCHECK; commit_list_insert(list->item, &reversed); } } } if (!reversed->next) { // if there is only one element in the list, we can sort it using // sort_in_merge_order. base = reversed->item; } else { // otherwise, we search for the base of the list if ((ret = find_base_for_list(reversed, &base))) return ret; if (base) { base->object.flags |= BOUNDARY; } while (reversed) { sort_first_epoch(pop_commit(&reversed), &stack); if (reversed) { // // if we have more commits to push, then the // first push for the next parent may (or may not) // represent a discontinuity with respect to the // parent currently on the top of the stack. // // mark it for checking here, and check it // with the next push...see sort_first_epoch for // more details. // stack->item->object.flags |= DISCONTINUITY; } } action = emit_stack(&stack, emitter); } if (base && (action != STOP)) { ret = sort_in_merge_order(base, emitter); } return ret; }