/* * csum-file.c * * Copyright (C) 2005 Linus Torvalds * * Simple file write infrastructure for writing SHA1-summed * files. Useful when you write a file that you want to be * able to verify hasn't been messed with afterwards. */ #include "cache.h" #include "progress.h" #include "csum-file.h" static void verify_buffer_or_die(struct hashfile *f, const void *buf, unsigned int count) { ssize_t ret = read_in_full(f->check_fd, f->check_buffer, count); if (ret < 0) die_errno("%s: sha1 file read error", f->name); if (ret != count) die("%s: sha1 file truncated", f->name); if (memcmp(buf, f->check_buffer, count)) die("sha1 file '%s' validation error", f->name); } static void flush(struct hashfile *f, const void *buf, unsigned int count) { if (0 <= f->check_fd && count) verify_buffer_or_die(f, buf, count); if (write_in_full(f->fd, buf, count) < 0) { if (errno == ENOSPC) die("sha1 file '%s' write error. Out of diskspace", f->name); die_errno("sha1 file '%s' write error", f->name); } f->total += count; display_throughput(f->tp, f->total); } void hashflush(struct hashfile *f) { unsigned offset = f->offset; if (offset) { the_hash_algo->update_fn(&f->ctx, f->buffer, offset); flush(f, f->buffer, offset); f->offset = 0; } } static void free_hashfile(struct hashfile *f) { free(f->buffer); free(f->check_buffer); free(f); } int finalize_hashfile(struct hashfile *f, unsigned char *result, unsigned int flags) { int fd; hashflush(f); the_hash_algo->final_fn(f->buffer, &f->ctx); if (result) hashcpy(result, f->buffer); if (flags & CSUM_HASH_IN_STREAM) flush(f, f->buffer, the_hash_algo->rawsz); if (flags & CSUM_FSYNC) fsync_or_die(f->fd, f->name); if (flags & CSUM_CLOSE) { if (close(f->fd)) die_errno("%s: sha1 file error on close", f->name); fd = 0; } else fd = f->fd; if (0 <= f->check_fd) { char discard; int cnt = read_in_full(f->check_fd, &discard, 1); if (cnt < 0) die_errno("%s: error when reading the tail of sha1 file", f->name); if (cnt) die("%s: sha1 file has trailing garbage", f->name); if (close(f->check_fd)) die_errno("%s: sha1 file error on close", f->name); } free_hashfile(f); return fd; } void hashwrite(struct hashfile *f, const void *buf, unsigned int count) { while (count) { unsigned left = f->buffer_len - f->offset; unsigned nr = count > left ? left : count; if (f->do_crc) f->crc32 = crc32(f->crc32, buf, nr); if (nr == f->buffer_len) { /* * Flush a full batch worth of data directly * from the input, skipping the memcpy() to * the hashfile's buffer. In this block, * f->offset is necessarily zero. */ the_hash_algo->update_fn(&f->ctx, buf, nr); flush(f, buf, nr); } else { /* * Copy to the hashfile's buffer, flushing only * if it became full. */ memcpy(f->buffer + f->offset, buf, nr); f->offset += nr; left -= nr; if (!left) hashflush(f); } count -= nr; buf = (char *) buf + nr; } } struct hashfile *hashfd_check(const char *name) { int sink, check; struct hashfile *f; sink = open("/dev/null", O_WRONLY); if (sink < 0) die_errno("unable to open /dev/null"); check = open(name, O_RDONLY); if (check < 0) die_errno("unable to open '%s'", name); f = hashfd(sink, name); f->check_fd = check; f->check_buffer = xmalloc(f->buffer_len); return f; } static struct hashfile *hashfd_internal(int fd, const char *name, struct progress *tp, size_t buffer_len) { struct hashfile *f = xmalloc(sizeof(*f)); f->fd = fd; f->check_fd = -1; f->offset = 0; f->total = 0; f->tp = tp; f->name = name; f->do_crc = 0; the_hash_algo->init_fn(&f->ctx); f->buffer_len = buffer_len; f->buffer = xmalloc(buffer_len); f->check_buffer = NULL; return f; } struct hashfile *hashfd(int fd, const char *name) { /* * Since we are not going to use a progress meter to * measure the rate of data passing through this hashfile, * use a larger buffer size to reduce fsync() calls. */ return hashfd_internal(fd, name, NULL, 128 * 1024); } struct hashfile *hashfd_throughput(int fd, const char *name, struct progress *tp) { /* * Since we are expecting to report progress of the * write into this hashfile, use a smaller buffer * size so the progress indicators arrive at a more * frequent rate. */ return hashfd_internal(fd, name, tp, 8 * 1024); } void hashfile_checkpoint(struct hashfile *f, struct hashfile_checkpoint *checkpoint) { hashflush(f); checkpoint->offset = f->total; the_hash_algo->clone_fn(&checkpoint->ctx, &f->ctx); } int hashfile_truncate(struct hashfile *f, struct hashfile_checkpoint *checkpoint) { off_t offset = checkpoint->offset; if (ftruncate(f->fd, offset) || lseek(f->fd, offset, SEEK_SET) != offset) return -1; f->total = offset; f->ctx = checkpoint->ctx; f->offset = 0; /* hashflush() was called in checkpoint */ return 0; } void crc32_begin(struct hashfile *f) { f->crc32 = crc32(0, NULL, 0); f->do_crc = 1; } uint32_t crc32_end(struct hashfile *f) { f->do_crc = 0; return f->crc32; } int hashfile_checksum_valid(const unsigned char *data, size_t total_len) { unsigned char got[GIT_MAX_RAWSZ]; git_hash_ctx ctx; size_t data_len = total_len - the_hash_algo->rawsz; if (total_len < the_hash_algo->rawsz) return 0; /* say "too short"? */ the_hash_algo->init_fn(&ctx); the_hash_algo->update_fn(&ctx, data, data_len); the_hash_algo->final_fn(got, &ctx); return hasheq(got, data + data_len); }