#include "cache.h" #include "lockfile.h" #include "tree.h" #include "tree-walk.h" #include "cache-tree.h" #ifndef DEBUG #define DEBUG 0 #endif struct cache_tree *cache_tree(void) { struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree)); it->entry_count = -1; return it; } void cache_tree_free(struct cache_tree **it_p) { int i; struct cache_tree *it = *it_p; if (!it) return; for (i = 0; i < it->subtree_nr; i++) if (it->down[i]) { cache_tree_free(&it->down[i]->cache_tree); free(it->down[i]); } free(it->down); free(it); *it_p = NULL; } static int subtree_name_cmp(const char *one, int onelen, const char *two, int twolen) { if (onelen < twolen) return -1; if (twolen < onelen) return 1; return memcmp(one, two, onelen); } static int subtree_pos(struct cache_tree *it, const char *path, int pathlen) { struct cache_tree_sub **down = it->down; int lo, hi; lo = 0; hi = it->subtree_nr; while (lo < hi) { int mi = (lo + hi) / 2; struct cache_tree_sub *mdl = down[mi]; int cmp = subtree_name_cmp(path, pathlen, mdl->name, mdl->namelen); if (!cmp) return mi; if (cmp < 0) hi = mi; else lo = mi + 1; } return -lo-1; } static struct cache_tree_sub *find_subtree(struct cache_tree *it, const char *path, int pathlen, int create) { struct cache_tree_sub *down; int pos = subtree_pos(it, path, pathlen); if (0 <= pos) return it->down[pos]; if (!create) return NULL; pos = -pos-1; ALLOC_GROW(it->down, it->subtree_nr + 1, it->subtree_alloc); it->subtree_nr++; FLEX_ALLOC_MEM(down, name, path, pathlen); down->cache_tree = NULL; down->namelen = pathlen; if (pos < it->subtree_nr) memmove(it->down + pos + 1, it->down + pos, sizeof(down) * (it->subtree_nr - pos - 1)); it->down[pos] = down; return down; } struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path) { int pathlen = strlen(path); return find_subtree(it, path, pathlen, 1); } static int do_invalidate_path(struct cache_tree *it, const char *path) { /* a/b/c * ==> invalidate self * ==> find "a", have it invalidate "b/c" * a * ==> invalidate self * ==> if "a" exists as a subtree, remove it. */ const char *slash; int namelen; struct cache_tree_sub *down; #if DEBUG fprintf(stderr, "cache-tree invalidate <%s>\n", path); #endif if (!it) return 0; slash = strchrnul(path, '/'); namelen = slash - path; it->entry_count = -1; if (!*slash) { int pos; pos = subtree_pos(it, path, namelen); if (0 <= pos) { cache_tree_free(&it->down[pos]->cache_tree); free(it->down[pos]); /* 0 1 2 3 4 5 * ^ ^subtree_nr = 6 * pos * move 4 and 5 up one place (2 entries) * 2 = 6 - 3 - 1 = subtree_nr - pos - 1 */ memmove(it->down+pos, it->down+pos+1, sizeof(struct cache_tree_sub *) * (it->subtree_nr - pos - 1)); it->subtree_nr--; } return 1; } down = find_subtree(it, path, namelen, 0); if (down) do_invalidate_path(down->cache_tree, slash + 1); return 1; } void cache_tree_invalidate_path(struct index_state *istate, const char *path) { if (do_invalidate_path(istate->cache_tree, path)) istate->cache_changed |= CACHE_TREE_CHANGED; } static int verify_cache(struct cache_entry **cache, int entries, int flags) { int i, funny; int silent = flags & WRITE_TREE_SILENT; /* Verify that the tree is merged */ funny = 0; for (i = 0; i < entries; i++) { const struct cache_entry *ce = cache[i]; if (ce_stage(ce)) { if (silent) return -1; if (10 < ++funny) { fprintf(stderr, "...\n"); break; } fprintf(stderr, "%s: unmerged (%s)\n", ce->name, oid_to_hex(&ce->oid)); } } if (funny) return -1; /* Also verify that the cache does not have path and path/file * at the same time. At this point we know the cache has only * stage 0 entries. */ funny = 0; for (i = 0; i < entries - 1; i++) { /* path/file always comes after path because of the way * the cache is sorted. Also path can appear only once, * which means conflicting one would immediately follow. */ const char *this_name = cache[i]->name; const char *next_name = cache[i+1]->name; int this_len = strlen(this_name); if (this_len < strlen(next_name) && strncmp(this_name, next_name, this_len) == 0 && next_name[this_len] == '/') { if (10 < ++funny) { fprintf(stderr, "...\n"); break; } fprintf(stderr, "You have both %s and %s\n", this_name, next_name); } } if (funny) return -1; return 0; } static void discard_unused_subtrees(struct cache_tree *it) { struct cache_tree_sub **down = it->down; int nr = it->subtree_nr; int dst, src; for (dst = src = 0; src < nr; src++) { struct cache_tree_sub *s = down[src]; if (s->used) down[dst++] = s; else { cache_tree_free(&s->cache_tree); free(s); it->subtree_nr--; } } } int cache_tree_fully_valid(struct cache_tree *it) { int i; if (!it) return 0; if (it->entry_count < 0 || !has_sha1_file(it->oid.hash)) return 0; for (i = 0; i < it->subtree_nr; i++) { if (!cache_tree_fully_valid(it->down[i]->cache_tree)) return 0; } return 1; } static int update_one(struct cache_tree *it, struct cache_entry **cache, int entries, const char *base, int baselen, int *skip_count, int flags) { struct strbuf buffer; int missing_ok = flags & WRITE_TREE_MISSING_OK; int dryrun = flags & WRITE_TREE_DRY_RUN; int repair = flags & WRITE_TREE_REPAIR; int to_invalidate = 0; int i; assert(!(dryrun && repair)); *skip_count = 0; if (0 <= it->entry_count && has_sha1_file(it->oid.hash)) return it->entry_count; /* * We first scan for subtrees and update them; we start by * marking existing subtrees -- the ones that are unmarked * should not be in the result. */ for (i = 0; i < it->subtree_nr; i++) it->down[i]->used = 0; /* * Find the subtrees and update them. */ i = 0; while (i < entries) { const struct cache_entry *ce = cache[i]; struct cache_tree_sub *sub; const char *path, *slash; int pathlen, sublen, subcnt, subskip; path = ce->name; pathlen = ce_namelen(ce); if (pathlen <= baselen || memcmp(base, path, baselen)) break; /* at the end of this level */ slash = strchr(path + baselen, '/'); if (!slash) { i++; continue; } /* * a/bbb/c (base = a/, slash = /c) * ==> * path+baselen = bbb/c, sublen = 3 */ sublen = slash - (path + baselen); sub = find_subtree(it, path + baselen, sublen, 1); if (!sub->cache_tree) sub->cache_tree = cache_tree(); subcnt = update_one(sub->cache_tree, cache + i, entries - i, path, baselen + sublen + 1, &subskip, flags); if (subcnt < 0) return subcnt; if (!subcnt) die("index cache-tree records empty sub-tree"); i += subcnt; sub->count = subcnt; /* to be used in the next loop */ *skip_count += subskip; sub->used = 1; } discard_unused_subtrees(it); /* * Then write out the tree object for this level. */ strbuf_init(&buffer, 8192); i = 0; while (i < entries) { const struct cache_entry *ce = cache[i]; struct cache_tree_sub *sub = NULL; const char *path, *slash; int pathlen, entlen; const unsigned char *sha1; unsigned mode; int expected_missing = 0; int contains_ita = 0; path = ce->name; pathlen = ce_namelen(ce); if (pathlen <= baselen || memcmp(base, path, baselen)) break; /* at the end of this level */ slash = strchr(path + baselen, '/'); if (slash) { entlen = slash - (path + baselen); sub = find_subtree(it, path + baselen, entlen, 0); if (!sub) die("cache-tree.c: '%.*s' in '%s' not found", entlen, path + baselen, path); i += sub->count; sha1 = sub->cache_tree->oid.hash; mode = S_IFDIR; contains_ita = sub->cache_tree->entry_count < 0; if (contains_ita) { to_invalidate = 1; expected_missing = 1; } } else { sha1 = ce->oid.hash; mode = ce->ce_mode; entlen = pathlen - baselen; i++; } if (is_null_sha1(sha1) || (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1))) { strbuf_release(&buffer); if (expected_missing) return -1; return error("invalid object %06o %s for '%.*s'", mode, sha1_to_hex(sha1), entlen+baselen, path); } /* * CE_REMOVE entries are removed before the index is * written to disk. Skip them to remain consistent * with the future on-disk index. */ if (ce->ce_flags & CE_REMOVE) { *skip_count = *skip_count + 1; continue; } /* * CE_INTENT_TO_ADD entries exist on on-disk index but * they are not part of generated trees. Invalidate up * to root to force cache-tree users to read elsewhere. */ if (!sub && ce_intent_to_add(ce)) { to_invalidate = 1; continue; } /* * "sub" can be an empty tree if all subentries are i-t-a. */ if (contains_ita && !hashcmp(sha1, EMPTY_TREE_SHA1_BIN)) continue; strbuf_grow(&buffer, entlen + 100); strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0'); strbuf_add(&buffer, sha1, 20); #if DEBUG fprintf(stderr, "cache-tree update-one %o %.*s\n", mode, entlen, path + baselen); #endif } if (repair) { unsigned char sha1[20]; hash_sha1_file(buffer.buf, buffer.len, tree_type, sha1); if (has_sha1_file(sha1)) hashcpy(it->oid.hash, sha1); else to_invalidate = 1; } else if (dryrun) hash_sha1_file(buffer.buf, buffer.len, tree_type, it->oid.hash); else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->oid.hash)) { strbuf_release(&buffer); return -1; } strbuf_release(&buffer); it->entry_count = to_invalidate ? -1 : i - *skip_count; #if DEBUG fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n", it->entry_count, it->subtree_nr, oid_to_hex(&it->oid)); #endif return i; } int cache_tree_update(struct index_state *istate, int flags) { struct cache_tree *it = istate->cache_tree; struct cache_entry **cache = istate->cache; int entries = istate->cache_nr; int skip, i = verify_cache(cache, entries, flags); if (i) return i; i = update_one(it, cache, entries, "", 0, &skip, flags); if (i < 0) return i; istate->cache_changed |= CACHE_TREE_CHANGED; return 0; } static void write_one(struct strbuf *buffer, struct cache_tree *it, const char *path, int pathlen) { int i; /* One "cache-tree" entry consists of the following: * path (NUL terminated) * entry_count, subtree_nr ("%d %d\n") * tree-sha1 (missing if invalid) * subtree_nr "cache-tree" entries for subtrees. */ strbuf_grow(buffer, pathlen + 100); strbuf_add(buffer, path, pathlen); strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr); #if DEBUG if (0 <= it->entry_count) fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n", pathlen, path, it->entry_count, it->subtree_nr, oid_to_hex(&it->oid)); else fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n", pathlen, path, it->subtree_nr); #endif if (0 <= it->entry_count) { strbuf_add(buffer, it->oid.hash, 20); } for (i = 0; i < it->subtree_nr; i++) { struct cache_tree_sub *down = it->down[i]; if (i) { struct cache_tree_sub *prev = it->down[i-1]; if (subtree_name_cmp(down->name, down->namelen, prev->name, prev->namelen) <= 0) die("fatal - unsorted cache subtree"); } write_one(buffer, down->cache_tree, down->name, down->namelen); } } void cache_tree_write(struct strbuf *sb, struct cache_tree *root) { write_one(sb, root, "", 0); } static struct cache_tree *read_one(const char **buffer, unsigned long *size_p) { const char *buf = *buffer; unsigned long size = *size_p; const char *cp; char *ep; struct cache_tree *it; int i, subtree_nr; it = NULL; /* skip name, but make sure name exists */ while (size && *buf) { size--; buf++; } if (!size) goto free_return; buf++; size--; it = cache_tree(); cp = buf; it->entry_count = strtol(cp, &ep, 10); if (cp == ep) goto free_return; cp = ep; subtree_nr = strtol(cp, &ep, 10); if (cp == ep) goto free_return; while (size && *buf && *buf != '\n') { size--; buf++; } if (!size) goto free_return; buf++; size--; if (0 <= it->entry_count) { if (size < 20) goto free_return; hashcpy(it->oid.hash, (const unsigned char*)buf); buf += 20; size -= 20; } #if DEBUG if (0 <= it->entry_count) fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n", *buffer, it->entry_count, subtree_nr, oid_to_hex(&it->oid)); else fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n", *buffer, subtree_nr); #endif /* * Just a heuristic -- we do not add directories that often but * we do not want to have to extend it immediately when we do, * hence +2. */ it->subtree_alloc = subtree_nr + 2; it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *)); for (i = 0; i < subtree_nr; i++) { /* read each subtree */ struct cache_tree *sub; struct cache_tree_sub *subtree; const char *name = buf; sub = read_one(&buf, &size); if (!sub) goto free_return; subtree = cache_tree_sub(it, name); subtree->cache_tree = sub; } if (subtree_nr != it->subtree_nr) die("cache-tree: internal error"); *buffer = buf; *size_p = size; return it; free_return: cache_tree_free(&it); return NULL; } struct cache_tree *cache_tree_read(const char *buffer, unsigned long size) { if (buffer[0]) return NULL; /* not the whole tree */ return read_one(&buffer, &size); } static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path) { if (!it) return NULL; while (*path) { const char *slash; struct cache_tree_sub *sub; slash = strchrnul(path, '/'); /* * Between path and slash is the name of the subtree * to look for. */ sub = find_subtree(it, path, slash - path, 0); if (!sub) return NULL; it = sub->cache_tree; path = slash; while (*path == '/') path++; } return it; } int write_index_as_tree(unsigned char *sha1, struct index_state *index_state, const char *index_path, int flags, const char *prefix) { int entries, was_valid, newfd; struct lock_file *lock_file; /* * We can't free this memory, it becomes part of a linked list * parsed atexit() */ lock_file = xcalloc(1, sizeof(struct lock_file)); newfd = hold_lock_file_for_update(lock_file, index_path, LOCK_DIE_ON_ERROR); entries = read_index_from(index_state, index_path); if (entries < 0) return WRITE_TREE_UNREADABLE_INDEX; if (flags & WRITE_TREE_IGNORE_CACHE_TREE) cache_tree_free(&index_state->cache_tree); if (!index_state->cache_tree) index_state->cache_tree = cache_tree(); was_valid = cache_tree_fully_valid(index_state->cache_tree); if (!was_valid) { if (cache_tree_update(index_state, flags) < 0) return WRITE_TREE_UNMERGED_INDEX; if (0 <= newfd) { if (!write_locked_index(index_state, lock_file, COMMIT_LOCK)) newfd = -1; } /* Not being able to write is fine -- we are only interested * in updating the cache-tree part, and if the next caller * ends up using the old index with unupdated cache-tree part * it misses the work we did here, but that is just a * performance penalty and not a big deal. */ } if (prefix) { struct cache_tree *subtree; subtree = cache_tree_find(index_state->cache_tree, prefix); if (!subtree) return WRITE_TREE_PREFIX_ERROR; hashcpy(sha1, subtree->oid.hash); } else hashcpy(sha1, index_state->cache_tree->oid.hash); if (0 <= newfd) rollback_lock_file(lock_file); return 0; } int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix) { return write_index_as_tree(sha1, &the_index, get_index_file(), flags, prefix); } static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree) { struct tree_desc desc; struct name_entry entry; int cnt; oidcpy(&it->oid, &tree->object.oid); init_tree_desc(&desc, tree->buffer, tree->size); cnt = 0; while (tree_entry(&desc, &entry)) { if (!S_ISDIR(entry.mode)) cnt++; else { struct cache_tree_sub *sub; struct tree *subtree = lookup_tree(entry.oid); if (!subtree->object.parsed) parse_tree(subtree); sub = cache_tree_sub(it, entry.path); sub->cache_tree = cache_tree(); prime_cache_tree_rec(sub->cache_tree, subtree); cnt += sub->cache_tree->entry_count; } } it->entry_count = cnt; } void prime_cache_tree(struct index_state *istate, struct tree *tree) { cache_tree_free(&istate->cache_tree); istate->cache_tree = cache_tree(); prime_cache_tree_rec(istate->cache_tree, tree); istate->cache_changed |= CACHE_TREE_CHANGED; } /* * find the cache_tree that corresponds to the current level without * exploding the full path into textual form. The root of the * cache tree is given as "root", and our current level is "info". * (1) When at root level, info->prev is NULL, so it is "root" itself. * (2) Otherwise, find the cache_tree that corresponds to one level * above us, and find ourselves in there. */ static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root, struct traverse_info *info) { struct cache_tree *our_parent; if (!info->prev) return root; our_parent = find_cache_tree_from_traversal(root, info->prev); return cache_tree_find(our_parent, info->name.path); } int cache_tree_matches_traversal(struct cache_tree *root, struct name_entry *ent, struct traverse_info *info) { struct cache_tree *it; it = find_cache_tree_from_traversal(root, info); it = cache_tree_find(it, ent->path); if (it && it->entry_count > 0 && !oidcmp(ent->oid, &it->oid)) return it->entry_count; return 0; } int update_main_cache_tree(int flags) { if (!the_index.cache_tree) the_index.cache_tree = cache_tree(); return cache_tree_update(&the_index, flags); }