#include "git-compat-util.h" #include "bloom.h" #include "diff.h" #include "diffcore.h" #include "revision.h" #include "hashmap.h" #include "commit-graph.h" #include "commit.h" define_commit_slab(bloom_filter_slab, struct bloom_filter); static struct bloom_filter_slab bloom_filters; struct pathmap_hash_entry { struct hashmap_entry entry; const char path[FLEX_ARRAY]; }; static uint32_t rotate_left(uint32_t value, int32_t count) { uint32_t mask = 8 * sizeof(uint32_t) - 1; count &= mask; return ((value << count) | (value >> ((-count) & mask))); } static inline unsigned char get_bitmask(uint32_t pos) { return ((unsigned char)1) << (pos & (BITS_PER_WORD - 1)); } static int load_bloom_filter_from_graph(struct commit_graph *g, struct bloom_filter *filter, struct commit *c) { uint32_t lex_pos, start_index, end_index; uint32_t graph_pos = commit_graph_position(c); while (graph_pos < g->num_commits_in_base) g = g->base_graph; /* The commit graph commit 'c' lives in doesn't carry Bloom filters. */ if (!g->chunk_bloom_indexes) return 0; lex_pos = graph_pos - g->num_commits_in_base; end_index = get_be32(g->chunk_bloom_indexes + 4 * lex_pos); if (lex_pos > 0) start_index = get_be32(g->chunk_bloom_indexes + 4 * (lex_pos - 1)); else start_index = 0; filter->len = end_index - start_index; filter->data = (unsigned char *)(g->chunk_bloom_data + sizeof(unsigned char) * start_index + BLOOMDATA_CHUNK_HEADER_SIZE); return 1; } /* * Calculate the murmur3 32-bit hash value for the given data * using the given seed. * Produces a uniformly distributed hash value. * Not considered to be cryptographically secure. * Implemented as described in https://en.wikipedia.org/wiki/MurmurHash#Algorithm */ uint32_t murmur3_seeded(uint32_t seed, const char *data, size_t len) { const uint32_t c1 = 0xcc9e2d51; const uint32_t c2 = 0x1b873593; const uint32_t r1 = 15; const uint32_t r2 = 13; const uint32_t m = 5; const uint32_t n = 0xe6546b64; int i; uint32_t k1 = 0; const char *tail; int len4 = len / sizeof(uint32_t); uint32_t k; for (i = 0; i < len4; i++) { uint32_t byte1 = (uint32_t)data[4*i]; uint32_t byte2 = ((uint32_t)data[4*i + 1]) << 8; uint32_t byte3 = ((uint32_t)data[4*i + 2]) << 16; uint32_t byte4 = ((uint32_t)data[4*i + 3]) << 24; k = byte1 | byte2 | byte3 | byte4; k *= c1; k = rotate_left(k, r1); k *= c2; seed ^= k; seed = rotate_left(seed, r2) * m + n; } tail = (data + len4 * sizeof(uint32_t)); switch (len & (sizeof(uint32_t) - 1)) { case 3: k1 ^= ((uint32_t)tail[2]) << 16; /*-fallthrough*/ case 2: k1 ^= ((uint32_t)tail[1]) << 8; /*-fallthrough*/ case 1: k1 ^= ((uint32_t)tail[0]) << 0; k1 *= c1; k1 = rotate_left(k1, r1); k1 *= c2; seed ^= k1; break; } seed ^= (uint32_t)len; seed ^= (seed >> 16); seed *= 0x85ebca6b; seed ^= (seed >> 13); seed *= 0xc2b2ae35; seed ^= (seed >> 16); return seed; } void fill_bloom_key(const char *data, size_t len, struct bloom_key *key, const struct bloom_filter_settings *settings) { int i; const uint32_t seed0 = 0x293ae76f; const uint32_t seed1 = 0x7e646e2c; const uint32_t hash0 = murmur3_seeded(seed0, data, len); const uint32_t hash1 = murmur3_seeded(seed1, data, len); key->hashes = (uint32_t *)xcalloc(settings->num_hashes, sizeof(uint32_t)); for (i = 0; i < settings->num_hashes; i++) key->hashes[i] = hash0 + i * hash1; } void clear_bloom_key(struct bloom_key *key) { FREE_AND_NULL(key->hashes); } void add_key_to_filter(const struct bloom_key *key, struct bloom_filter *filter, const struct bloom_filter_settings *settings) { int i; uint64_t mod = filter->len * BITS_PER_WORD; for (i = 0; i < settings->num_hashes; i++) { uint64_t hash_mod = key->hashes[i] % mod; uint64_t block_pos = hash_mod / BITS_PER_WORD; filter->data[block_pos] |= get_bitmask(hash_mod); } } void init_bloom_filters(void) { init_bloom_filter_slab(&bloom_filters); } static int pathmap_cmp(const void *hashmap_cmp_fn_data, const struct hashmap_entry *eptr, const struct hashmap_entry *entry_or_key, const void *keydata) { const struct pathmap_hash_entry *e1, *e2; e1 = container_of(eptr, const struct pathmap_hash_entry, entry); e2 = container_of(entry_or_key, const struct pathmap_hash_entry, entry); return strcmp(e1->path, e2->path); } static void init_truncated_large_filter(struct bloom_filter *filter) { filter->data = xmalloc(1); filter->data[0] = 0xFF; filter->len = 1; } struct bloom_filter *get_or_compute_bloom_filter(struct repository *r, struct commit *c, int compute_if_not_present, const struct bloom_filter_settings *settings, enum bloom_filter_computed *computed) { struct bloom_filter *filter; int i; struct diff_options diffopt; if (computed) *computed = BLOOM_NOT_COMPUTED; if (!bloom_filters.slab_size) return NULL; filter = bloom_filter_slab_at(&bloom_filters, c); if (!filter->data) { load_commit_graph_info(r, c); if (commit_graph_position(c) != COMMIT_NOT_FROM_GRAPH) load_bloom_filter_from_graph(r->objects->commit_graph, filter, c); } if (filter->data && filter->len) return filter; if (!compute_if_not_present) return NULL; repo_diff_setup(r, &diffopt); diffopt.flags.recursive = 1; diffopt.detect_rename = 0; diffopt.max_changes = settings->max_changed_paths; diff_setup_done(&diffopt); /* ensure commit is parsed so we have parent information */ repo_parse_commit(r, c); if (c->parents) diff_tree_oid(&c->parents->item->object.oid, &c->object.oid, "", &diffopt); else diff_tree_oid(NULL, &c->object.oid, "", &diffopt); diffcore_std(&diffopt); if (diff_queued_diff.nr <= settings->max_changed_paths) { struct hashmap pathmap = HASHMAP_INIT(pathmap_cmp, NULL); struct pathmap_hash_entry *e; struct hashmap_iter iter; for (i = 0; i < diff_queued_diff.nr; i++) { const char *path = diff_queued_diff.queue[i]->two->path; /* * Add each leading directory of the changed file, i.e. for * 'dir/subdir/file' add 'dir' and 'dir/subdir' as well, so * the Bloom filter could be used to speed up commands like * 'git log dir/subdir', too. * * Note that directories are added without the trailing '/'. */ do { char *last_slash = strrchr(path, '/'); FLEX_ALLOC_STR(e, path, path); hashmap_entry_init(&e->entry, strhash(path)); if (!hashmap_get(&pathmap, &e->entry, NULL)) hashmap_add(&pathmap, &e->entry); else free(e); if (!last_slash) last_slash = (char*)path; *last_slash = '\0'; } while (*path); diff_free_filepair(diff_queued_diff.queue[i]); } if (hashmap_get_size(&pathmap) > settings->max_changed_paths) { init_truncated_large_filter(filter); if (computed) *computed |= BLOOM_TRUNC_LARGE; goto cleanup; } filter->len = (hashmap_get_size(&pathmap) * settings->bits_per_entry + BITS_PER_WORD - 1) / BITS_PER_WORD; if (!filter->len) { if (computed) *computed |= BLOOM_TRUNC_EMPTY; filter->len = 1; } CALLOC_ARRAY(filter->data, filter->len); hashmap_for_each_entry(&pathmap, &iter, e, entry) { struct bloom_key key; fill_bloom_key(e->path, strlen(e->path), &key, settings); add_key_to_filter(&key, filter, settings); clear_bloom_key(&key); } cleanup: hashmap_clear_and_free(&pathmap, struct pathmap_hash_entry, entry); } else { for (i = 0; i < diff_queued_diff.nr; i++) diff_free_filepair(diff_queued_diff.queue[i]); init_truncated_large_filter(filter); if (computed) *computed |= BLOOM_TRUNC_LARGE; } if (computed) *computed |= BLOOM_COMPUTED; free(diff_queued_diff.queue); DIFF_QUEUE_CLEAR(&diff_queued_diff); return filter; } int bloom_filter_contains(const struct bloom_filter *filter, const struct bloom_key *key, const struct bloom_filter_settings *settings) { int i; uint64_t mod = filter->len * BITS_PER_WORD; if (!mod) return -1; for (i = 0; i < settings->num_hashes; i++) { uint64_t hash_mod = key->hashes[i] % mod; uint64_t block_pos = hash_mod / BITS_PER_WORD; if (!(filter->data[block_pos] & get_bitmask(hash_mod))) return 0; } return 1; }