summaryrefslogtreecommitdiff
path: root/merge-recursive.c
diff options
context:
space:
mode:
Diffstat (limited to 'merge-recursive.c')
-rw-r--r--merge-recursive.c174
1 files changed, 166 insertions, 8 deletions
diff --git a/merge-recursive.c b/merge-recursive.c
index 50eb6c7..7a5f6fb 100644
--- a/merge-recursive.c
+++ b/merge-recursive.c
@@ -1521,6 +1521,91 @@ static void remove_hashmap_entries(struct hashmap *dir_renames,
}
/*
+ * See if there is a directory rename for path, and if there are any file
+ * level conflicts for the renamed location. If there is a rename and
+ * there are no conflicts, return the new name. Otherwise, return NULL.
+ */
+static char *handle_path_level_conflicts(struct merge_options *o,
+ const char *path,
+ struct dir_rename_entry *entry,
+ struct hashmap *collisions,
+ struct tree *tree)
+{
+ char *new_path = NULL;
+ struct collision_entry *collision_ent;
+ int clean = 1;
+ struct strbuf collision_paths = STRBUF_INIT;
+
+ /*
+ * entry has the mapping of old directory name to new directory name
+ * that we want to apply to path.
+ */
+ new_path = apply_dir_rename(entry, path);
+
+ if (!new_path) {
+ /* This should only happen when entry->non_unique_new_dir set */
+ if (!entry->non_unique_new_dir)
+ BUG("entry->non_unqiue_dir not set and !new_path");
+ output(o, 1, _("CONFLICT (directory rename split): "
+ "Unclear where to place %s because directory "
+ "%s was renamed to multiple other directories, "
+ "with no destination getting a majority of the "
+ "files."),
+ path, entry->dir);
+ clean = 0;
+ return NULL;
+ }
+
+ /*
+ * The caller needs to have ensured that it has pre-populated
+ * collisions with all paths that map to new_path. Do a quick check
+ * to ensure that's the case.
+ */
+ collision_ent = collision_find_entry(collisions, new_path);
+ if (collision_ent == NULL)
+ BUG("collision_ent is NULL");
+
+ /*
+ * Check for one-sided add/add/.../add conflicts, i.e.
+ * where implicit renames from the other side doing
+ * directory rename(s) can affect this side of history
+ * to put multiple paths into the same location. Warn
+ * and bail on directory renames for such paths.
+ */
+ if (collision_ent->reported_already) {
+ clean = 0;
+ } else if (tree_has_path(tree, new_path)) {
+ collision_ent->reported_already = 1;
+ strbuf_add_separated_string_list(&collision_paths, ", ",
+ &collision_ent->source_files);
+ output(o, 1, _("CONFLICT (implicit dir rename): Existing "
+ "file/dir at %s in the way of implicit "
+ "directory rename(s) putting the following "
+ "path(s) there: %s."),
+ new_path, collision_paths.buf);
+ clean = 0;
+ } else if (collision_ent->source_files.nr > 1) {
+ collision_ent->reported_already = 1;
+ strbuf_add_separated_string_list(&collision_paths, ", ",
+ &collision_ent->source_files);
+ output(o, 1, _("CONFLICT (implicit dir rename): Cannot map "
+ "more than one path to %s; implicit directory "
+ "renames tried to put these paths there: %s"),
+ new_path, collision_paths.buf);
+ clean = 0;
+ }
+
+ /* Free memory we no longer need */
+ strbuf_release(&collision_paths);
+ if (!clean && new_path) {
+ free(new_path);
+ return NULL;
+ }
+
+ return new_path;
+}
+
+/*
* There are a couple things we want to do at the directory level:
* 1. Check for both sides renaming to the same thing, in order to avoid
* implicit renaming of files that should be left in place. (See
@@ -1799,6 +1884,59 @@ static void compute_collisions(struct hashmap *collisions,
}
}
+static char *check_for_directory_rename(struct merge_options *o,
+ const char *path,
+ struct tree *tree,
+ struct hashmap *dir_renames,
+ struct hashmap *dir_rename_exclusions,
+ struct hashmap *collisions,
+ int *clean_merge)
+{
+ char *new_path = NULL;
+ struct dir_rename_entry *entry = check_dir_renamed(path, dir_renames);
+ struct dir_rename_entry *oentry = NULL;
+
+ if (!entry)
+ return new_path;
+
+ /*
+ * This next part is a little weird. We do not want to do an
+ * implicit rename into a directory we renamed on our side, because
+ * that will result in a spurious rename/rename(1to2) conflict. An
+ * example:
+ * Base commit: dumbdir/afile, otherdir/bfile
+ * Side 1: smrtdir/afile, otherdir/bfile
+ * Side 2: dumbdir/afile, dumbdir/bfile
+ * Here, while working on Side 1, we could notice that otherdir was
+ * renamed/merged to dumbdir, and change the diff_filepair for
+ * otherdir/bfile into a rename into dumbdir/bfile. However, Side
+ * 2 will notice the rename from dumbdir to smrtdir, and do the
+ * transitive rename to move it from dumbdir/bfile to
+ * smrtdir/bfile. That gives us bfile in dumbdir vs being in
+ * smrtdir, a rename/rename(1to2) conflict. We really just want
+ * the file to end up in smrtdir. And the way to achieve that is
+ * to not let Side1 do the rename to dumbdir, since we know that is
+ * the source of one of our directory renames.
+ *
+ * That's why oentry and dir_rename_exclusions is here.
+ *
+ * As it turns out, this also prevents N-way transient rename
+ * confusion; See testcases 9c and 9d of t6043.
+ */
+ oentry = dir_rename_find_entry(dir_rename_exclusions, entry->new_dir.buf);
+ if (oentry) {
+ output(o, 1, _("WARNING: Avoiding applying %s -> %s rename "
+ "to %s, because %s itself was renamed."),
+ entry->dir, entry->new_dir.buf, path, entry->new_dir.buf);
+ } else {
+ new_path = handle_path_level_conflicts(o, path, entry,
+ collisions, tree);
+ *clean_merge &= (new_path != NULL);
+ }
+
+ return new_path;
+}
+
/*
* Get information of all renames which occurred in 'pairs', making use of
* any implicit directory renames inferred from the other side of history.
@@ -1809,11 +1947,13 @@ static void compute_collisions(struct hashmap *collisions,
static struct string_list *get_renames(struct merge_options *o,
struct diff_queue_struct *pairs,
struct hashmap *dir_renames,
+ struct hashmap *dir_rename_exclusions,
struct tree *tree,
struct tree *o_tree,
struct tree *a_tree,
struct tree *b_tree,
- struct string_list *entries)
+ struct string_list *entries,
+ int *clean_merge)
{
int i;
struct hashmap collisions;
@@ -1828,11 +1968,22 @@ static struct string_list *get_renames(struct merge_options *o,
struct string_list_item *item;
struct rename *re;
struct diff_filepair *pair = pairs->queue[i];
+ char *new_path; /* non-NULL only with directory renames */
- if (pair->status != 'R') {
+ if (pair->status == 'D') {
diff_free_filepair(pair);
continue;
}
+ new_path = check_for_directory_rename(o, pair->two->path, tree,
+ dir_renames,
+ dir_rename_exclusions,
+ &collisions,
+ clean_merge);
+ if (pair->status != 'R' && !new_path) {
+ diff_free_filepair(pair);
+ continue;
+ }
+
re = xmalloc(sizeof(*re));
re->processed = 0;
re->pair = pair;
@@ -2150,7 +2301,7 @@ static int handle_renames(struct merge_options *o,
{
struct diff_queue_struct *head_pairs, *merge_pairs;
struct hashmap *dir_re_head, *dir_re_merge;
- int clean;
+ int clean = 1;
ri->head_renames = NULL;
ri->merge_renames = NULL;
@@ -2169,13 +2320,20 @@ static int handle_renames(struct merge_options *o,
dir_re_merge, merge);
ri->head_renames = get_renames(o, head_pairs,
- dir_re_merge, head,
- common, head, merge, entries);
+ dir_re_merge, dir_re_head, head,
+ common, head, merge, entries,
+ &clean);
+ if (clean < 0)
+ goto cleanup;
ri->merge_renames = get_renames(o, merge_pairs,
- dir_re_head, merge,
- common, head, merge, entries);
- clean = process_renames(o, ri->head_renames, ri->merge_renames);
+ dir_re_head, dir_re_merge, merge,
+ common, head, merge, entries,
+ &clean);
+ if (clean < 0)
+ goto cleanup;
+ clean &= process_renames(o, ri->head_renames, ri->merge_renames);
+cleanup:
/*
* Some cleanup is deferred until cleanup_renames() because the
* data structures are still needed and referenced in