summaryrefslogtreecommitdiff
path: root/compiler/hsSyn/HsTypes.hs
blob: 0649ee3376b8886bce8519e7e6dd25ec5106bd35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
 
 
HsTypes: Abstract syntax: user-defined types
-}
 
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE UndecidableInstances #-} -- Note [Pass sensitive types]
                                      -- in module PlaceHolder
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
 
module HsTypes (
        HsType(..), NewHsTypeX(..), LHsType, HsKind, LHsKind,
        HsTyVarBndr(..), LHsTyVarBndr, ForallVisFlag(..),
        LHsQTyVars(..),
        HsImplicitBndrs(..),
        HsWildCardBndrs(..),
        LHsSigType, LHsSigWcType, LHsWcType,
        HsTupleSort(..),
        HsContext, LHsContext, noLHsContext,
        HsTyLit(..),
        HsIPName(..), hsIPNameFS,
        HsArg(..), numVisibleArgs,
        LHsTypeArg,
 
        LBangType, BangType,
        HsSrcBang(..), HsImplBang(..),
        SrcStrictness(..), SrcUnpackedness(..),
        getBangType, getBangStrictness,
 
        ConDeclField(..), LConDeclField, pprConDeclFields,
 
        HsConDetails(..),
 
        FieldOcc(..), LFieldOcc, mkFieldOcc,
        AmbiguousFieldOcc(..), mkAmbiguousFieldOcc,
        rdrNameAmbiguousFieldOcc, selectorAmbiguousFieldOcc,
        unambiguousFieldOcc, ambiguousFieldOcc,
 
        mkAnonWildCardTy, pprAnonWildCard,
 
        mkHsImplicitBndrs, mkHsWildCardBndrs, hsImplicitBody,
        mkEmptyImplicitBndrs, mkEmptyWildCardBndrs,
        mkHsQTvs, hsQTvExplicit, emptyLHsQTvs, isEmptyLHsQTvs,
        isHsKindedTyVar, hsTvbAllKinded, isLHsForAllTy,
        hsScopedTvs, hsWcScopedTvs, dropWildCards,
        hsTyVarName, hsAllLTyVarNames, hsLTyVarLocNames,
        hsLTyVarName, hsLTyVarNames, hsLTyVarLocName, hsExplicitLTyVarNames,
        splitLHsInstDeclTy, getLHsInstDeclHead, getLHsInstDeclClass_maybe,
        splitLHsPatSynTy,
        splitLHsForAllTy, splitLHsForAllTyInvis,
        splitLHsQualTy, splitLHsSigmaTy, splitLHsSigmaTyInvis,
        splitHsFunType, hsTyGetAppHead_maybe,
        mkHsOpTy, mkHsAppTy, mkHsAppTys, mkHsAppKindTy,
        ignoreParens, hsSigType, hsSigWcType,
        hsLTyVarBndrToType, hsLTyVarBndrsToTypes,
 
        -- Printing
        pprHsType, pprHsForAll, pprHsForAllExtra, pprHsExplicitForAll,
        pprLHsContext,
        hsTypeNeedsParens, parenthesizeHsType, parenthesizeHsContext
    ) where
 
import GhcPrelude
 
import {-# SOURCE #-} HsExpr ( HsSplice, pprSplice )
 
import HsExtension
import HsLit () -- for instances
 
import Id ( Id )
import Name( Name )
import RdrName ( RdrName )
import DataCon( HsSrcBang(..), HsImplBang(..),
                SrcStrictness(..), SrcUnpackedness(..) )
import TysPrim( funTyConName )
import Type
import HsDoc
import BasicTypes
import SrcLoc
import Outputable
import FastString
import Maybes( isJust )
import Util ( count )
 
import Data.Data hiding ( Fixity, Prefix, Infix )
 
{-
************************************************************************
*                                                                      *
\subsection{Bang annotations}
*                                                                      *
************************************************************************
-}
 
-- | Located Bang Type
type LBangType pass = Located (BangType pass)
 
-- | Bang Type
type BangType pass  = HsType pass       -- Bangs are in the HsType data type
 
getBangType :: LHsType a -> LHsType a
getBangType (L _ (HsBangTy _ _ ty)) = ty
getBangType ty                      = ty
 
getBangStrictness :: LHsType a -> HsSrcBang
getBangStrictness (L _ (HsBangTy _ s _)) = s
getBangStrictness _ = (HsSrcBang NoSourceText NoSrcUnpack NoSrcStrict)
 
{-
************************************************************************
*                                                                      *
\subsection{Data types}
*                                                                      *
************************************************************************
 
This is the syntax for types as seen in type signatures.
 
Note [HsBSig binder lists]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a binder (or pattern) decorated with a type or kind,
   \ (x :: a -> a). blah
   forall (a :: k -> *) (b :: k). blah
Then we use a LHsBndrSig on the binder, so that the
renamer can decorate it with the variables bound
by the pattern ('a' in the first example, 'k' in the second),
assuming that neither of them is in scope already
See also Note [Kind and type-variable binders] in RnTypes
 
Note [HsType binders]
~~~~~~~~~~~~~~~~~~~~~
The system for recording type and kind-variable binders in HsTypes
is a bit complicated.  Here's how it works.
 
* In a HsType,
     HsForAllTy   represents an /explicit, user-written/ 'forall'
                   e.g.   forall a b.   {...} or
                          forall a b -> {...}
     HsQualTy     represents an /explicit, user-written/ context
                   e.g.   (Eq a, Show a) => ...
                  The context can be empty if that's what the user wrote
  These constructors represent what the user wrote, no more
  and no less.
 
* The ForallVisFlag field of HsForAllTy represents whether a forall is
  invisible (e.g., forall a b. {...}, with a dot) or visible
  (e.g., forall a b -> {...}, with an arrow).
 
* HsTyVarBndr describes a quantified type variable written by the
  user.  For example
     f :: forall a (b :: *).  blah
  here 'a' and '(b::*)' are each a HsTyVarBndr.  A HsForAllTy has
  a list of LHsTyVarBndrs.
 
* HsImplicitBndrs is a wrapper that gives the implicitly-quantified
  kind and type variables of the wrapped thing.  It is filled in by
  the renamer. For example, if the user writes
     f :: a -> a
  the HsImplicitBinders binds the 'a' (not a HsForAllTy!).
  NB: this implicit quantification is purely lexical: we bind any
      type or kind variables that are not in scope. The type checker
      may subsequently quantify over further kind variables.
 
* HsWildCardBndrs is a wrapper that binds the wildcard variables
  of the wrapped thing.  It is filled in by the renamer
     f :: _a -> _
  The enclosing HsWildCardBndrs binds the wildcards _a and _.
 
* The explicit presence of these wrappers specifies, in the HsSyn,
  exactly where implicit quantification is allowed, and where
  wildcards are allowed.
 
* LHsQTyVars is used in data/class declarations, where the user gives
  explicit *type* variable bindings, but we need to implicitly bind
  *kind* variables.  For example
      class C (a :: k -> *) where ...
  The 'k' is implicitly bound in the hsq_tvs field of LHsQTyVars
 
Note [The wildcard story for types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Types can have wildcards in them, to support partial type signatures,
like       f :: Int -> (_ , _a) -> _a
 
A wildcard in a type can be
 
  * An anonymous wildcard,
        written '_'
    In HsType this is represented by HsWildCardTy.
    The renamer leaves it untouched, and it is later given fresh meta tyvars in
    the typechecker.
 
  * A named wildcard,
        written '_a', '_foo', etc
    In HsType this is represented by (HsTyVar "_a")
    i.e. a perfectly ordinary type variable that happens
         to start with an underscore
 
Note carefully:
 
* When NamedWildCards is off, type variables that start with an
  underscore really /are/ ordinary type variables.  And indeed, even
  when NamedWildCards is on you can bind _a explicitly as an ordinary
  type variable:
        data T _a _b = MkT _b _a
  Or even:
        f :: forall _a. _a -> _b
  Here _a is an ordinary forall'd binder, but (With NamedWildCards)
  _b is a named wildcard.  (See the comments in #10982)
 
* Named wildcards are bound by the HsWildCardBndrs construct, which wraps
  types that are allowed to have wildcards. Unnamed wildcards however are left
  unchanged until typechecking, where we give them fresh wild tyavrs and
  determine whether or not to emit hole constraints on each wildcard
  (we don't if it's a visible type/kind argument or a type family pattern).
  See related notes Note [Wildcards in visible kind application]
  and Note [Wildcards in visible type application] in TcHsType.hs
 
* After type checking is done, we report what types the wildcards
  got unified with.
 
Note [Ordering of implicit variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since the advent of -XTypeApplications, GHC makes promises about the ordering
of implicit variable quantification. Specifically, we offer that implicitly
quantified variables (such as those in const :: a -> b -> a, without a `forall`)
will occur in left-to-right order of first occurrence. Here are a few examples:
 
  const :: a -> b -> a       -- forall a b. ...
  f :: Eq a => b -> a -> a   -- forall a b. ...  contexts are included
 
  type a <-< b = b -> a
  g :: a <-< b               -- forall a b. ...  type synonyms matter
 
  class Functor f where
    fmap :: (a -> b) -> f a -> f b   -- forall f a b. ...
    -- The f is quantified by the class, so only a and b are considered in fmap
 
This simple story is complicated by the possibility of dependency: all variables
must come after any variables mentioned in their kinds.
 
  typeRep :: Typeable a => TypeRep (a :: k)   -- forall k a. ...
 
The k comes first because a depends on k, even though the k appears later than
the a in the code. Thus, GHC does a *stable topological sort* on the variables.
By "stable", we mean that any two variables who do not depend on each other
preserve their existing left-to-right ordering.
 
Implicitly bound variables are collected by the extract- family of functions
(extractHsTysRdrTyVars, extractHsTyVarBndrsKVs, etc.) in RnTypes.
These functions thus promise to keep left-to-right ordering.
Look for pointers to this note to see the places where the action happens.
 
Note that we also maintain this ordering in kind signatures. Even though
there's no visible kind application (yet), having implicit variables be
quantified in left-to-right order in kind signatures is nice since:
 
* It's consistent with the treatment for type signatures.
* It can affect how types are displayed with -fprint-explicit-kinds (see
  #15568 for an example), which is a situation where knowing the order in
  which implicit variables are quantified can be useful.
* In the event that visible kind application is implemented, the order in
  which we would expect implicit variables to be ordered in kinds will have
  already been established.
-}
 
-- | Located Haskell Context
type LHsContext pass = Located (HsContext pass)
      -- ^ 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnUnit'
      -- For details on above see note [Api annotations] in ApiAnnotation
 
noLHsContext :: LHsContext pass
-- Use this when there is no context in the original program
-- It would really be more kosher to use a Maybe, to distinguish
--     class () => C a where ...
-- from
--     class C a where ...
noLHsContext = noLoc []
 
-- | Haskell Context
type HsContext pass = [LHsType pass]
 
-- | Located Haskell Type
type LHsType pass = Located (HsType pass)
      -- ^ May have 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnComma' when
      --   in a list
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
-- | Haskell Kind
type HsKind pass = HsType pass
 
-- | Located Haskell Kind
type LHsKind pass = Located (HsKind pass)
      -- ^ 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDcolon'
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
--------------------------------------------------
--             LHsQTyVars
--  The explicitly-quantified binders in a data/type declaration
 
-- | Located Haskell Type Variable Binder
type LHsTyVarBndr pass = Located (HsTyVarBndr pass)
                         -- See Note [HsType binders]
 
-- | Located Haskell Quantified Type Variables
data LHsQTyVars pass   -- See Note [HsType binders]
  = HsQTvs { hsq_ext :: XHsQTvs pass
 
           , hsq_explicit :: [LHsTyVarBndr pass]
                -- Explicit variables, written by the user
                -- See Note [HsForAllTy tyvar binders]
    }
  | XLHsQTyVars (XXLHsQTyVars pass)
 
type HsQTvsRn = [Name]  -- Implicit variables
  -- For example, in   data T (a :: k1 -> k2) = ...
  -- the 'a' is explicit while 'k1', 'k2' are implicit
 
type instance XHsQTvs GhcPs = NoExt
type instance XHsQTvs GhcRn = HsQTvsRn
type instance XHsQTvs GhcTc = HsQTvsRn
 
type instance XXLHsQTyVars  (GhcPass _) = NoExtCon
 
mkHsQTvs :: [LHsTyVarBndr GhcPs] -> LHsQTyVars GhcPs
mkHsQTvs tvs = HsQTvs { hsq_ext = noExt, hsq_explicit = tvs }
 
hsQTvExplicit :: LHsQTyVars pass -> [LHsTyVarBndr pass]
hsQTvExplicit = hsq_explicit
 
emptyLHsQTvs :: LHsQTyVars GhcRn
emptyLHsQTvs = HsQTvs { hsq_ext = [], hsq_explicit = [] }
 
isEmptyLHsQTvs :: LHsQTyVars GhcRn -> Bool
isEmptyLHsQTvs (HsQTvs { hsq_ext = imp, hsq_explicit = exp })
  = null imp && null exp
isEmptyLHsQTvs _ = False
 
------------------------------------------------
--            HsImplicitBndrs
-- Used to quantify the implicit binders of a type
--    * Implicit binders of a type signature (LHsSigType/LHsSigWcType)
--    * Patterns in a type/data family instance (HsTyPats)
 
-- | Haskell Implicit Binders
data HsImplicitBndrs pass thing   -- See Note [HsType binders]
  = HsIB { hsib_ext  :: XHsIB pass thing -- after renamer: [Name]
                                         -- Implicitly-bound kind & type vars
                                         -- Order is important; see
                                         -- Note [Ordering of implicit variables]
                                         -- in RnTypes
 
         , hsib_body :: thing            -- Main payload (type or list of types)
    }
  | XHsImplicitBndrs (XXHsImplicitBndrs pass thing)
 
type instance XHsIB              GhcPs _ = NoExt
type instance XHsIB              GhcRn _ = [Name]
type instance XHsIB              GhcTc _ = [Name]
 
type instance XXHsImplicitBndrs  (GhcPass _) _ = NoExtCon
 
-- | Haskell Wildcard Binders
data HsWildCardBndrs pass thing
    -- See Note [HsType binders]
    -- See Note [The wildcard story for types]
  = HsWC { hswc_ext :: XHsWC pass thing
                -- after the renamer
                -- Wild cards, only named
                -- See Note [Wildcards in visible kind application]
 
         , hswc_body :: thing
                -- Main payload (type or list of types)
                -- If there is an extra-constraints wildcard,
                -- it's still there in the hsc_body.
    }
  | XHsWildCardBndrs (XXHsWildCardBndrs pass thing)
 
type instance XHsWC              GhcPs b = NoExt
type instance XHsWC              GhcRn b = [Name]
type instance XHsWC              GhcTc b = [Name]
 
type instance XXHsWildCardBndrs  (GhcPass _) b = NoExtCon
 
-- | Located Haskell Signature Type
type LHsSigType   pass = HsImplicitBndrs pass (LHsType pass)    -- Implicit only
 
-- | Located Haskell Wildcard Type
type LHsWcType    pass = HsWildCardBndrs pass (LHsType pass)    -- Wildcard only
 
-- | Located Haskell Signature Wildcard Type
type LHsSigWcType pass = HsWildCardBndrs pass (LHsSigType pass) -- Both
 
-- See Note [Representing type signatures]
 
hsImplicitBody :: (XXHsImplicitBndrs pass thing ~ NoExtCon)
               => HsImplicitBndrs pass thing -> thing
hsImplicitBody (HsIB { hsib_body = body }) = body
hsImplicitBody (XHsImplicitBndrs nec) = noExtCon nec
 
hsSigType :: (XXHsImplicitBndrs pass (LHsType pass) ~ NoExtCon)
          => LHsSigType pass -> LHsType pass
hsSigType = hsImplicitBody
 
hsSigWcType :: LHsSigWcType pass -> LHsType pass
hsSigWcType sig_ty = hsib_body (hswc_body sig_ty)
 
dropWildCards :: LHsSigWcType pass -> LHsSigType pass
-- Drop the wildcard part of a LHsSigWcType
dropWildCards sig_ty = hswc_body sig_ty
 
{- Note [Representing type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HsSigType is used to represent an explicit user type signature
such as   f :: a -> a
     or   g (x :: a -> a) = x
 
A HsSigType is just a HsImplicitBndrs wrapping a LHsType.
 * The HsImplicitBndrs binds the /implicitly/ quantified tyvars
 * The LHsType binds the /explicitly/ quantified tyvars
 
E.g. For a signature like
   f :: forall (a::k). blah
we get
   HsIB { hsib_vars = [k]
        , hsib_body = HsForAllTy { hst_bndrs = [(a::*)]
                                 , hst_body = blah }
The implicit kind variable 'k' is bound by the HsIB;
the explicitly forall'd tyvar 'a' is bound by the HsForAllTy
-}
 
mkHsImplicitBndrs :: thing -> HsImplicitBndrs GhcPs thing
mkHsImplicitBndrs x = HsIB { hsib_ext  = noExt
                           , hsib_body = x }
 
mkHsWildCardBndrs :: thing -> HsWildCardBndrs GhcPs thing
mkHsWildCardBndrs x = HsWC { hswc_body = x
                           , hswc_ext  = noExt }
 
-- Add empty binders.  This is a bit suspicious; what if
-- the wrapped thing had free type variables?
mkEmptyImplicitBndrs :: thing -> HsImplicitBndrs GhcRn thing
mkEmptyImplicitBndrs x = HsIB { hsib_ext = []
                              , hsib_body = x }
 
mkEmptyWildCardBndrs :: thing -> HsWildCardBndrs GhcRn thing
mkEmptyWildCardBndrs x = HsWC { hswc_body = x
                              , hswc_ext  = [] }
 
 
--------------------------------------------------
-- | These names are used early on to store the names of implicit
-- parameters.  They completely disappear after type-checking.
newtype HsIPName = HsIPName FastString
  deriving( Eq, Data )
 
hsIPNameFS :: HsIPName -> FastString
hsIPNameFS (HsIPName n) = n
 
instance Outputable HsIPName where
    ppr (HsIPName n) = char '?' <> ftext n -- Ordinary implicit parameters
 
instance OutputableBndr HsIPName where
    pprBndr _ n   = ppr n         -- Simple for now
    pprInfixOcc  n = ppr n
    pprPrefixOcc n = ppr n
 
--------------------------------------------------
 
-- | Haskell Type Variable Binder
data HsTyVarBndr pass
  = UserTyVar        -- no explicit kinding
         (XUserTyVar pass)
         (Located (IdP pass))
        -- See Note [Located RdrNames] in HsExpr
  | KindedTyVar
         (XKindedTyVar pass)
         (Located (IdP pass))
         (LHsKind pass)  -- The user-supplied kind signature
        -- ^
        --  - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen',
        --          'ApiAnnotation.AnnDcolon', 'ApiAnnotation.AnnClose'
 
        -- For details on above see note [Api annotations] in ApiAnnotation
 
  | XTyVarBndr
      (XXTyVarBndr pass)
 
type instance XUserTyVar    (GhcPass _) = NoExt
type instance XKindedTyVar  (GhcPass _) = NoExt
type instance XXTyVarBndr   (GhcPass _) = NoExtCon
 
-- | Does this 'HsTyVarBndr' come with an explicit kind annotation?
isHsKindedTyVar :: (XXTyVarBndr pass ~ NoExtCon)
                => HsTyVarBndr pass -> Bool
isHsKindedTyVar (UserTyVar {})   = False
isHsKindedTyVar (KindedTyVar {}) = True
isHsKindedTyVar (XTyVarBndr nec) = noExtCon nec
 
-- | Do all type variables in this 'LHsQTyVars' come with kind annotations?
hsTvbAllKinded :: (XXTyVarBndr pass ~ NoExtCon)
               => LHsQTyVars pass -> Bool
hsTvbAllKinded = all (isHsKindedTyVar . unLoc) . hsQTvExplicit
 
-- | Haskell Type
data HsType pass
  = HsForAllTy   -- See Note [HsType binders]
      { hst_xforall :: XForAllTy pass
      , hst_fvf     :: ForallVisFlag -- Is this `forall a -> {...}` or
                                     --         `forall a. {...}`?
      , hst_bndrs   :: [LHsTyVarBndr pass]
                                       -- Explicit, user-supplied 'forall a b c'
      , hst_body    :: LHsType pass      -- body type
      }
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnForall',
      --         'ApiAnnotation.AnnDot','ApiAnnotation.AnnDarrow'
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsQualTy   -- See Note [HsType binders]
      { hst_xqual :: XQualTy pass
      , hst_ctxt  :: LHsContext pass       -- Context C => blah
      , hst_body  :: LHsType pass }
 
  | HsTyVar  (XTyVar pass)
              PromotionFlag    -- Whether explicitly promoted,
                               -- for the pretty printer
             (Located (IdP pass))
                  -- Type variable, type constructor, or data constructor
                  -- see Note [Promotions (HsTyVar)]
                  -- See Note [Located RdrNames] in HsExpr
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsAppTy             (XAppTy pass)
                        (LHsType pass)
                        (LHsType pass)
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsAppKindTy         (XAppKindTy pass) -- type level type app
                        (LHsType pass)
                        (LHsKind pass)
 
  | HsFunTy             (XFunTy pass)
                        (LHsType pass)   -- function type
                        (LHsType pass)
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnRarrow',
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsListTy            (XListTy pass)
                        (LHsType pass)  -- Element type
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'['@,
      --         'ApiAnnotation.AnnClose' @']'@
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsTupleTy           (XTupleTy pass)
                        HsTupleSort
                        [LHsType pass]  -- Element types (length gives arity)
    -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'(' or '(#'@,
    --         'ApiAnnotation.AnnClose' @')' or '#)'@
 
    -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsSumTy             (XSumTy pass)
                        [LHsType pass]  -- Element types (length gives arity)
    -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'(#'@,
    --         'ApiAnnotation.AnnClose' '#)'@
 
    -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsOpTy              (XOpTy pass)
                        (LHsType pass) (Located (IdP pass)) (LHsType pass)
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsParTy             (XParTy pass)
                        (LHsType pass)   -- See Note [Parens in HsSyn] in HsExpr
        -- Parenthesis preserved for the precedence re-arrangement in RnTypes
        -- It's important that a * (b + c) doesn't get rearranged to (a*b) + c!
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'('@,
      --         'ApiAnnotation.AnnClose' @')'@
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsIParamTy          (XIParamTy pass)
                        (Located HsIPName) -- (?x :: ty)
                        (LHsType pass)   -- Implicit parameters as they occur in
                                         -- contexts
      -- ^
      -- > (?x :: ty)
      --
      -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDcolon'
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsStarTy            (XStarTy pass)
                        Bool             -- Is this the Unicode variant?
                                         -- Note [HsStarTy]
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
  | HsKindSig           (XKindSig pass)
                        (LHsType pass)  -- (ty :: kind)
                        (LHsKind pass)  -- A type with a kind signature
      -- ^
      -- > (ty :: kind)
      --
      -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'('@,
      --         'ApiAnnotation.AnnDcolon','ApiAnnotation.AnnClose' @')'@
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsSpliceTy          (XSpliceTy pass)
                        (HsSplice pass)   -- Includes quasi-quotes
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'$('@,
      --         'ApiAnnotation.AnnClose' @')'@
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsDocTy             (XDocTy pass)
                        (LHsType pass) LHsDocString -- A documented type
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsBangTy    (XBangTy pass)
                HsSrcBang (LHsType pass)   -- Bang-style type annotations
      -- ^ - 'ApiAnnotation.AnnKeywordId' :
      --         'ApiAnnotation.AnnOpen' @'{-\# UNPACK' or '{-\# NOUNPACK'@,
      --         'ApiAnnotation.AnnClose' @'#-}'@
      --         'ApiAnnotation.AnnBang' @\'!\'@
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsRecTy     (XRecTy pass)
                [LConDeclField pass]    -- Only in data type declarations
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'{'@,
      --         'ApiAnnotation.AnnClose' @'}'@
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  -- | HsCoreTy (XCoreTy pass) Type -- An escape hatch for tunnelling a *closed*
  --                                -- Core Type through HsSyn.
  --     -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsExplicitListTy       -- A promoted explicit list
        (XExplicitListTy pass)
        PromotionFlag      -- whether explcitly promoted, for pretty printer
        [LHsType pass]
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @"'["@,
      --         'ApiAnnotation.AnnClose' @']'@
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsExplicitTupleTy      -- A promoted explicit tuple
        (XExplicitTupleTy pass)
        [LHsType pass]
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @"'("@,
      --         'ApiAnnotation.AnnClose' @')'@
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsTyLit (XTyLit pass) HsTyLit      -- A promoted numeric literal.
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  | HsWildCardTy (XWildCardTy pass)  -- A type wildcard
      -- See Note [The wildcard story for types]
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
  -- For adding new constructors via Trees that Grow
  | XHsType
      (XXType pass)
 
data NewHsTypeX
  = NHsCoreTy Type -- An escape hatch for tunnelling a *closed*
                   -- Core Type through HsSyn.
    deriving Data
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None
 
instance Outputable NewHsTypeX where
  ppr (NHsCoreTy ty) = ppr ty
 
type instance XForAllTy        (GhcPass _) = NoExt
type instance XQualTy          (GhcPass _) = NoExt
type instance XTyVar           (GhcPass _) = NoExt
type instance XAppTy           (GhcPass _) = NoExt
type instance XFunTy           (GhcPass _) = NoExt
type instance XListTy          (GhcPass _) = NoExt
type instance XTupleTy         (GhcPass _) = NoExt
type instance XSumTy           (GhcPass _) = NoExt
type instance XOpTy            (GhcPass _) = NoExt
type instance XParTy           (GhcPass _) = NoExt
type instance XIParamTy        (GhcPass _) = NoExt
type instance XStarTy          (GhcPass _) = NoExt
type instance XKindSig         (GhcPass _) = NoExt
 
type instance XAppKindTy       (GhcPass _) = SrcSpan -- Where the `@` lives
 
type instance XSpliceTy        GhcPs = NoExt
type instance XSpliceTy        GhcRn = NoExt
type instance XSpliceTy        GhcTc = Kind
 
type instance XDocTy           (GhcPass _) = NoExt
type instance XBangTy          (GhcPass _) = NoExt
type instance XRecTy           (GhcPass _) = NoExt
 
type instance XExplicitListTy  GhcPs = NoExt
type instance XExplicitListTy  GhcRn = NoExt
type instance XExplicitListTy  GhcTc = Kind
 
type instance XExplicitTupleTy GhcPs = NoExt
type instance XExplicitTupleTy GhcRn = NoExt
type instance XExplicitTupleTy GhcTc = [Kind]
 
type instance XTyLit           (GhcPass _) = NoExt
 
type instance XWildCardTy      (GhcPass _) = NoExt
 
type instance XXType         (GhcPass _) = NewHsTypeX
 
 
-- Note [Literal source text] in BasicTypes for SourceText fields in
-- the following
-- | Haskell Type Literal
data HsTyLit
  = HsNumTy SourceText Integer
  | HsStrTy SourceText FastString
    deriving Data
 
 
{-
Note [HsForAllTy tyvar binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After parsing:
  * Implicit => empty
    Explicit => the variables the user wrote
 
After renaming
  * Implicit => the *type* variables free in the type
    Explicit => the variables the user wrote (renamed)
 
Qualified currently behaves exactly as Implicit,
but it is deprecated to use it for implicit quantification.
In this case, GHC 7.10 gives a warning; see
Note [Context quantification] in RnTypes, and #4426.
In GHC 8.0, Qualified will no longer bind variables
and this will become an error.
 
The kind variables bound in the hsq_implicit field come both
  a) from the kind signatures on the kind vars (eg k1)
  b) from the scope of the forall (eg k2)
Example:   f :: forall (a::k1) b. T a (b::k2)
 
 
Note [Unit tuples]
~~~~~~~~~~~~~~~~~~
Consider the type
    type instance F Int = ()
We want to parse that "()"
    as HsTupleTy HsBoxedOrConstraintTuple [],
NOT as HsTyVar unitTyCon
 
Why? Because F might have kind (* -> Constraint), so we when parsing we
don't know if that tuple is going to be a constraint tuple or an ordinary
unit tuple.  The HsTupleSort flag is specifically designed to deal with
that, but it has to work for unit tuples too.
 
Note [Promotions (HsTyVar)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
HsTyVar: A name in a type or kind.
  Here are the allowed namespaces for the name.
    In a type:
      Var: not allowed
      Data: promoted data constructor
      Tv: type variable
      TcCls before renamer: type constructor, class constructor, or promoted data constructor
      TcCls after renamer: type constructor or class constructor
    In a kind:
      Var, Data: not allowed
      Tv: kind variable
      TcCls: kind constructor or promoted type constructor
 
  The 'Promoted' field in an HsTyVar captures whether the type was promoted in
  the source code by prefixing an apostrophe.
 
Note [HsStarTy]
~~~~~~~~~~~~~~~
When the StarIsType extension is enabled, we want to treat '*' and its Unicode
variant identically to 'Data.Kind.Type'. Unfortunately, doing so in the parser
would mean that when we pretty-print it back, we don't know whether the user
wrote '*' or 'Type', and lose the parse/ppr roundtrip property.
 
As a workaround, we parse '*' as HsStarTy (if it stands for 'Data.Kind.Type')
and then desugar it to 'Data.Kind.Type' in the typechecker (see tc_hs_type).
When '*' is a regular type operator (StarIsType is disabled), HsStarTy is not
involved.
 
 
Note [Promoted lists and tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Notice the difference between
   HsListTy    HsExplicitListTy
   HsTupleTy   HsExplicitListTupleTy
 
E.g.    f :: [Int]                      HsListTy
 
        g3  :: T '[]                   All these use
        g2  :: T '[True]                  HsExplicitListTy
        g1  :: T '[True,False]
        g1a :: T [True,False]             (can omit ' where unambiguous)
 
  kind of T :: [Bool] -> *        This kind uses HsListTy!
 
E.g.    h :: (Int,Bool)                 HsTupleTy; f is a pair
        k :: S '(True,False)            HsExplicitTypleTy; S is indexed by
                                           a type-level pair of booleans
        kind of S :: (Bool,Bool) -> *   This kind uses HsExplicitTupleTy
 
Note [Distinguishing tuple kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 
Apart from promotion, tuples can have one of three different kinds:
 
        x :: (Int, Bool)                -- Regular boxed tuples
        f :: Int# -> (# Int#, Int# #)   -- Unboxed tuples
        g :: (Eq a, Ord a) => a         -- Constraint tuples
 
For convenience, internally we use a single constructor for all of these,
namely HsTupleTy, but keep track of the tuple kind (in the first argument to
HsTupleTy, a HsTupleSort). We can tell if a tuple is unboxed while parsing,
because of the #. However, with -XConstraintKinds we can only distinguish
between constraint and boxed tuples during type checking, in general. Hence the
four constructors of HsTupleSort:
 
        HsUnboxedTuple                  -> Produced by the parser
        HsBoxedTuple                    -> Certainly a boxed tuple
        HsConstraintTuple               -> Certainly a constraint tuple
        HsBoxedOrConstraintTuple        -> Could be a boxed or a constraint
                                        tuple. Produced by the parser only,
                                        disappears after type checking
-}
 
-- | Haskell Tuple Sort
data HsTupleSort = HsUnboxedTuple
                 | HsBoxedTuple
                 | HsConstraintTuple
                 | HsBoxedOrConstraintTuple
                 deriving Data
 
-- | Located Constructor Declaration Field
type LConDeclField pass = Located (ConDeclField pass)
      -- ^ May have 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnComma' when
      --   in a list
 
      -- For details on above see note [Api annotations] in ApiAnnotation
 
-- | Constructor Declaration Field
data ConDeclField pass  -- Record fields have Haddoc docs on them
  = ConDeclField { cd_fld_ext  :: XConDeclField pass,
                   cd_fld_names :: [LFieldOcc pass],
                                   -- ^ See Note [ConDeclField passs]
                   cd_fld_type :: LBangType pass,
                   cd_fld_doc  :: Maybe LHsDocString }
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDcolon'
 
      -- For details on above see note [Api annotations] in ApiAnnotation
  | XConDeclField (XXConDeclField pass)
 
type instance XConDeclField  (GhcPass _) = NoExt
type instance XXConDeclField (GhcPass _) = NoExtCon
 
instance (p ~ GhcPass pass, OutputableBndrId p)
       => Outputable (ConDeclField p) where
  ppr (ConDeclField _ fld_n fld_ty _) = ppr fld_n <+> dcolon <+> ppr fld_ty
  ppr (XConDeclField x) = ppr x
 
-- HsConDetails is used for patterns/expressions *and* for data type
-- declarations
-- | Haskell Constructor Details
data HsConDetails arg rec
  = PrefixCon [arg]             -- C p1 p2 p3
  | RecCon    rec               -- C { x = p1, y = p2 }
  | InfixCon  arg arg           -- p1 `C` p2
  deriving Data
 
instance (Outputable arg, Outputable rec)
         => Outputable (HsConDetails arg rec) where
  ppr (PrefixCon args) = text "PrefixCon" <+> ppr args
  ppr (RecCon rec)     = text "RecCon:" <+> ppr rec
  ppr (InfixCon l r)   = text "InfixCon:" <+> ppr [l, r]
 
{-
Note [ConDeclField passs]
~~~~~~~~~~~~~~~~~~~~~~~~~
 
A ConDeclField contains a list of field occurrences: these always
include the field label as the user wrote it.  After the renamer, it
will additionally contain the identity of the selector function in the
second component.
 
Due to DuplicateRecordFields, the OccName of the selector function
may have been mangled, which is why we keep the original field label
separately.  For example, when DuplicateRecordFields is enabled
 
    data T = MkT { x :: Int }
 
gives
 
    ConDeclField { cd_fld_names = [L _ (FieldOcc "x" $sel:x:MkT)], ... }.
-}
 
-----------------------
-- A valid type must have a for-all at the top of the type, or of the fn arg
-- types
 
---------------------
hsWcScopedTvs :: LHsSigWcType GhcRn -> [Name]
-- Get the lexically-scoped type variables of a HsSigType
--  - the explicitly-given forall'd type variables
--  - the implicitly-bound kind variables
--  - the named wildcars; see Note [Scoping of named wildcards]
-- because they scope in the same way
hsWcScopedTvs sig_ty
  | HsWC { hswc_ext = nwcs, hswc_body = sig_ty1 }  <- sig_ty
  , HsIB { hsib_ext = vars
         , hsib_body = sig_ty2 } <- sig_ty1
  = case sig_ty2 of
      L _ (HsForAllTy { hst_bndrs = tvs }) -> vars ++ nwcs ++
                                              hsLTyVarNames tvs
               -- include kind variables only if the type is headed by forall
               -- (this is consistent with GHC 7 behaviour)
      _                                    -> nwcs
hsWcScopedTvs (HsWC _ (XHsImplicitBndrs nec)) = noExtCon nec
hsWcScopedTvs (XHsWildCardBndrs nec) = noExtCon nec
 
hsScopedTvs :: LHsSigType GhcRn -> [Name]
-- Same as hsWcScopedTvs, but for a LHsSigType
hsScopedTvs sig_ty
  | HsIB { hsib_ext = vars
         , hsib_body = sig_ty2 } <- sig_ty
  , L _ (HsForAllTy { hst_bndrs = tvs }) <- sig_ty2
  = vars ++ hsLTyVarNames tvs
  | otherwise
  = []
 
{- Note [Scoping of named wildcards]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  f :: _a -> _a
  f x = let g :: _a -> _a
            g = ...
        in ...
 
Currently, for better or worse, the "_a" variables are all the same. So
although there is no explicit forall, the "_a" scopes over the definition.
I don't know if this is a good idea, but there it is.
-}
 
---------------------
hsTyVarName :: (XXTyVarBndr pass ~ NoExtCon)
            => HsTyVarBndr pass -> IdP pass
hsTyVarName (UserTyVar _ (L _ n))     = n
hsTyVarName (KindedTyVar _ (L _ n) _) = n
hsTyVarName (XTyVarBndr nec) = noExtCon nec
 
hsLTyVarName :: (XXTyVarBndr pass ~ NoExtCon)
             => LHsTyVarBndr pass -> IdP pass
hsLTyVarName = hsTyVarName . unLoc
 
hsLTyVarNames :: (XXTyVarBndr pass ~ NoExtCon)
              => [LHsTyVarBndr pass] -> [IdP pass]
hsLTyVarNames = map hsLTyVarName
 
hsExplicitLTyVarNames :: (XXTyVarBndr pass ~ NoExtCon)
                      => LHsQTyVars pass -> [IdP pass]
-- Explicit variables only
hsExplicitLTyVarNames qtvs = map hsLTyVarName (hsQTvExplicit qtvs)
 
hsAllLTyVarNames :: LHsQTyVars GhcRn -> [Name]
-- All variables
hsAllLTyVarNames (HsQTvs { hsq_ext = kvs
                         , hsq_explicit = tvs })
  = kvs ++ hsLTyVarNames tvs
hsAllLTyVarNames (XLHsQTyVars nec) = noExtCon nec
 
hsLTyVarLocName :: (XXTyVarBndr pass ~ NoExtCon)
                => LHsTyVarBndr pass -> Located (IdP pass)
hsLTyVarLocName = onHasSrcSpan hsTyVarName
 
hsLTyVarLocNames :: (XXTyVarBndr pass ~ NoExtCon)
                 => LHsQTyVars pass -> [Located (IdP pass)]
hsLTyVarLocNames qtvs = map hsLTyVarLocName (hsQTvExplicit qtvs)
 
-- | Convert a LHsTyVarBndr to an equivalent LHsType.
hsLTyVarBndrToType :: LHsTyVarBndr (GhcPass p) -> LHsType (GhcPass p)
hsLTyVarBndrToType = onHasSrcSpan cvt
  where cvt (UserTyVar _ n) = HsTyVar noExt NotPromoted n
        cvt (KindedTyVar _ (L name_loc n) kind)
          = HsKindSig noExt
                   (L name_loc (HsTyVar noExt NotPromoted (L name_loc n))) kind
        cvt (XTyVarBndr nec) = noExtCon nec
 
-- | Convert a LHsTyVarBndrs to a list of types.
-- Works on *type* variable only, no kind vars.
hsLTyVarBndrsToTypes :: LHsQTyVars (GhcPass p) -> [LHsType (GhcPass p)]
hsLTyVarBndrsToTypes (HsQTvs { hsq_explicit = tvbs }) = map hsLTyVarBndrToType tvbs
hsLTyVarBndrsToTypes (XLHsQTyVars nec) = noExtCon nec
 
---------------------
ignoreParens :: LHsType pass -> LHsType pass
ignoreParens (L _ (HsParTy _ ty)) = ignoreParens ty
ignoreParens ty                   = ty
 
isLHsForAllTy :: LHsType p -> Bool
isLHsForAllTy (L _ (HsForAllTy {})) = True
isLHsForAllTy _                     = False
 
{-
************************************************************************
*                                                                      *
                Building types
*                                                                      *
************************************************************************
-}
 
mkAnonWildCardTy :: HsType GhcPs
mkAnonWildCardTy = HsWildCardTy noExt
 
mkHsOpTy :: LHsType (GhcPass p) -> Located (IdP (GhcPass p))
         -> LHsType (GhcPass p) -> HsType (GhcPass p)
mkHsOpTy ty1 op ty2 = HsOpTy noExt ty1 op ty2
 
mkHsAppTy :: LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
mkHsAppTy t1 t2
  = addCLoc t1 t2 (HsAppTy noExt t1 (parenthesizeHsType appPrec t2))
 
mkHsAppTys :: LHsType (GhcPass p) -> [LHsType (GhcPass p)]
           -> LHsType (GhcPass p)
mkHsAppTys = foldl' mkHsAppTy
 
mkHsAppKindTy :: XAppKindTy (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
              -> LHsType (GhcPass p)
mkHsAppKindTy ext ty k
  = addCLoc ty k (HsAppKindTy ext ty k)
 
{-
************************************************************************
*                                                                      *
                Decomposing HsTypes
*                                                                      *
************************************************************************
-}
 
---------------------------------
-- splitHsFunType decomposes a type (t1 -> t2 ... -> tn)
-- Breaks up any parens in the result type:
--      splitHsFunType (a -> (b -> c)) = ([a,b], c)
-- Also deals with (->) t1 t2; that is why it only works on LHsType Name
--   (see #9096)
splitHsFunType :: LHsType GhcRn -> ([LHsType GhcRn], LHsType GhcRn)
splitHsFunType (L _ (HsParTy _ ty))
  = splitHsFunType ty
 
splitHsFunType (L _ (HsFunTy _ x y))
  | (args, res) <- splitHsFunType y
  = (x:args, res)
{- This is not so correct, because it won't work with visible kind app, in case
  someone wants to write '(->) @k1 @k2 t1 t2'. Fixing this would require changing
  ConDeclGADT abstract syntax -}
splitHsFunType orig_ty@(L _ (HsAppTy _ t1 t2))
  = go t1 [t2]
  where  -- Look for (->) t1 t2, possibly with parenthesisation
    go (L _ (HsTyVar _ _ (L _ fn))) tys | fn == funTyConName
                                 , [t1,t2] <- tys
                                 , (args, res) <- splitHsFunType t2
                                 = (t1:args, res)
    go (L _ (HsAppTy _ t1 t2)) tys = go t1 (t2:tys)
    go (L _ (HsParTy _ ty))    tys = go ty tys
    go _                       _   = ([], orig_ty)  -- Failure to match
 
splitHsFunType other = ([], other)
 
-- retrieve the name of the "head" of a nested type application
-- somewhat like splitHsAppTys, but a little more thorough
-- used to examine the result of a GADT-like datacon, so it doesn't handle
-- *all* cases (like lists, tuples, (~), etc.)
hsTyGetAppHead_maybe :: LHsType (GhcPass p)
                     -> Maybe (Located (IdP (GhcPass p)))
hsTyGetAppHead_maybe = go
  where
    go (L _ (HsTyVar _ _ ln))          = Just ln
    go (L _ (HsAppTy _ l _))           = go l
    go (L _ (HsAppKindTy _ t _))       = go t
    go (L _ (HsOpTy _ _ (L loc n) _))  = Just (L loc n)
    go (L _ (HsParTy _ t))             = go t
    go (L _ (HsKindSig _ t _))         = go t
    go _                               = Nothing
 
------------------------------------------------------------
-- Arguments in an expression/type after splitting
data HsArg tm ty
  = HsValArg tm   -- Argument is an ordinary expression     (f arg)
  | HsTypeArg SrcSpan ty -- Argument is a visible type application (f @ty)
                         -- SrcSpan is location of the `@`
  | HsArgPar SrcSpan -- See Note [HsArgPar]
 
numVisibleArgs :: [HsArg tm ty] -> Arity
numVisibleArgs = count is_vis
  where is_vis (HsValArg _) = True
        is_vis _            = False
 
-- type level equivalent
type LHsTypeArg p = HsArg (LHsType p) (LHsKind p)
 
instance (Outputable tm, Outputable ty) => Outputable (HsArg tm ty) where
  ppr (HsValArg tm)    = ppr tm
  ppr (HsTypeArg _ ty) = char '@' <> ppr ty
  ppr (HsArgPar sp)    = text "HsArgPar"  <+> ppr sp
{-
Note [HsArgPar]
A HsArgPar indicates that everything to the left of this in the argument list is
enclosed in parentheses together with the function itself. It is necessary so
that we can recreate the parenthesis structure in the original source after
typechecking the arguments.
 
The SrcSpan is the span of the original HsPar
 
((f arg1) arg2 arg3) results in an input argument list of
[HsValArg arg1, HsArgPar span1, HsValArg arg2, HsValArg arg3, HsArgPar span2]
 
-}
 
--------------------------------
 
-- | Decompose a pattern synonym type signature into its constituent parts.
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall a. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsPatSynTy :: LHsType pass
                 -> ( [LHsTyVarBndr pass]    -- universals
                    , LHsContext pass        -- required constraints
                    , [LHsTyVarBndr pass]    -- existentials
                    , LHsContext pass        -- provided constraints
                    , LHsType pass)          -- body type
splitLHsPatSynTy ty = (univs, reqs, exis, provs, ty4)
  where
    (univs, ty1) = splitLHsForAllTyInvis ty
    (reqs,  ty2) = splitLHsQualTy ty1
    (exis,  ty3) = splitLHsForAllTyInvis ty2
    (provs, ty4) = splitLHsQualTy ty3
 
-- | Decompose a sigma type (of the form @forall <tvs>. context => body@)
-- into its constituent parts.
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall a. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsSigmaTy :: LHsType pass
                -> ([LHsTyVarBndr pass], LHsContext pass, LHsType pass)
splitLHsSigmaTy ty
  | (tvs, ty1)  <- splitLHsForAllTy ty
  , (ctxt, ty2) <- splitLHsQualTy ty1
  = (tvs, ctxt, ty2)
 
-- | Like 'splitLHsSigmaTy', but only splits type variable binders that were
-- quantified invisibly (e.g., @forall a.@, with a dot).
--
-- This function is used to split apart certain types, such as instance
-- declaration types, which disallow visible @forall@s. For instance, if GHC
-- split apart the @forall@ in @instance forall a -> Show (Blah a)@, then that
-- declaration would mistakenly be accepted!
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall a. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsSigmaTyInvis :: LHsType pass
                     -> ([LHsTyVarBndr pass], LHsContext pass, LHsType pass)
splitLHsSigmaTyInvis ty
  | (tvs,  ty1) <- splitLHsForAllTyInvis ty
  , (ctxt, ty2) <- splitLHsQualTy ty1
  = (tvs, ctxt, ty2)
 
-- | Decompose a type of the form @forall <tvs>. body@) into its constituent
-- parts.
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall a. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsForAllTy :: LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
splitLHsForAllTy (L _ (HsParTy _ ty)) = splitLHsForAllTy ty
splitLHsForAllTy (L _ (HsForAllTy { hst_bndrs = tvs, hst_body = body })) = (tvs, body)
splitLHsForAllTy body              = ([], body)
 
-- | Like 'splitLHsForAllTy', but only splits type variable binders that
-- were quantified invisibly (e.g., @forall a.@, with a dot).
--
-- This function is used to split apart certain types, such as instance
-- declaration types, which disallow visible @forall@s. For instance, if GHC
-- split apart the @forall@ in @instance forall a -> Show (Blah a)@, then that
-- declaration would mistakenly be accepted!
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall a. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsForAllTyInvis :: LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
splitLHsForAllTyInvis lty@(L _ ty) =
  case ty of
    HsParTy _ ty' -> splitLHsForAllTyInvis ty'
    HsForAllTy { hst_fvf = fvf', hst_bndrs = tvs', hst_body = body' }
      |  fvf' == ForallInvis
      -> (tvs', body')
    _ -> ([], lty)
 
-- | Decompose a type of the form @context => body@ into its constituent parts.
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(context => <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsQualTy :: LHsType pass -> (LHsContext pass, LHsType pass)
splitLHsQualTy (L _ (HsParTy _ ty)) = splitLHsQualTy ty
splitLHsQualTy (L _ (HsQualTy { hst_ctxt = ctxt, hst_body = body })) = (ctxt,     body)
splitLHsQualTy body              = (noLHsContext, body)
 
-- | Decompose a type class instance type (of the form
-- @forall <tvs>. context => instance_head@) into its constituent parts.
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall <tvs>. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsInstDeclTy :: LHsSigType GhcRn
                   -> ([Name], LHsContext GhcRn, LHsType GhcRn)
-- Split up an instance decl type, returning the pieces
splitLHsInstDeclTy (HsIB { hsib_ext = itkvs
                         , hsib_body = inst_ty })
  | (tvs, cxt, body_ty) <- splitLHsSigmaTyInvis inst_ty
  = (itkvs ++ hsLTyVarNames tvs, cxt, body_ty)
         -- Return implicitly bound type and kind vars
         -- For an instance decl, all of them are in scope
splitLHsInstDeclTy (XHsImplicitBndrs nec) = noExtCon nec
 
getLHsInstDeclHead :: (XXHsImplicitBndrs pass (LHsType pass) ~ NoExtCon)
                   => LHsSigType pass -> LHsType pass
getLHsInstDeclHead inst_ty
  | (_tvs, _cxt, body_ty) <- splitLHsSigmaTyInvis (hsSigType inst_ty)
  = body_ty
 
getLHsInstDeclClass_maybe :: LHsSigType (GhcPass p)
                          -> Maybe (Located (IdP (GhcPass p)))
-- Works on (HsSigType RdrName)
getLHsInstDeclClass_maybe inst_ty
  = do { let head_ty = getLHsInstDeclHead inst_ty
       ; cls <- hsTyGetAppHead_maybe head_ty
       ; return cls }
 
{-
************************************************************************
*                                                                      *
                FieldOcc
*                                                                      *
************************************************************************
-}
 
-- | Located Field Occurrence
type LFieldOcc pass = Located (FieldOcc pass)
 
-- | Field Occurrence
--
-- Represents an *occurrence* of an unambiguous field.  We store
-- both the 'RdrName' the user originally wrote, and after the
-- renamer, the selector function.
data FieldOcc pass = FieldOcc { extFieldOcc     :: XCFieldOcc pass
                              , rdrNameFieldOcc :: Located RdrName
                                 -- ^ See Note [Located RdrNames] in HsExpr
                              }
 
  | XFieldOcc
      (XXFieldOcc pass)
deriving instance (p ~ GhcPass pass, Eq (XCFieldOcc p)) => Eq  (FieldOcc p)
deriving instance (p ~ GhcPass pass, Ord (XCFieldOcc p)) => Ord (FieldOcc p)
 
type instance XCFieldOcc GhcPs = NoExt
type instance XCFieldOcc GhcRn = Name
type instance XCFieldOcc GhcTc = Id
 
type instance XXFieldOcc (GhcPass _) = NoExtCon
 
instance Outputable (FieldOcc pass) where
  ppr = ppr . rdrNameFieldOcc
 
mkFieldOcc :: Located RdrName -> FieldOcc GhcPs
mkFieldOcc rdr = FieldOcc noExt rdr
 
 
-- | Ambiguous Field Occurrence
--
-- Represents an *occurrence* of a field that is potentially
-- ambiguous after the renamer, with the ambiguity resolved by the
-- typechecker.  We always store the 'RdrName' that the user
-- originally wrote, and store the selector function after the renamer
-- (for unambiguous occurrences) or the typechecker (for ambiguous
-- occurrences).
--
-- See Note [HsRecField and HsRecUpdField] in HsPat and
-- Note [Disambiguating record fields] in TcExpr.
-- See Note [Located RdrNames] in HsExpr
data AmbiguousFieldOcc pass
  = Unambiguous (XUnambiguous pass) (Located RdrName)
  | Ambiguous   (XAmbiguous pass)   (Located RdrName)
  | XAmbiguousFieldOcc (XXAmbiguousFieldOcc pass)
 
type instance XUnambiguous GhcPs = NoExt
type instance XUnambiguous GhcRn = Name
type instance XUnambiguous GhcTc = Id
 
type instance XAmbiguous GhcPs = NoExt
type instance XAmbiguous GhcRn = NoExt
type instance XAmbiguous GhcTc = Id
 
type instance XXAmbiguousFieldOcc (GhcPass _) = NoExtCon
 
instance p ~ GhcPass pass => Outputable (AmbiguousFieldOcc p) where
  ppr = ppr . rdrNameAmbiguousFieldOcc
 
instance p ~ GhcPass pass => OutputableBndr (AmbiguousFieldOcc p) where
  pprInfixOcc  = pprInfixOcc . rdrNameAmbiguousFieldOcc
  pprPrefixOcc = pprPrefixOcc . rdrNameAmbiguousFieldOcc
 
mkAmbiguousFieldOcc :: Located RdrName -> AmbiguousFieldOcc GhcPs
mkAmbiguousFieldOcc rdr = Unambiguous noExt rdr
 
rdrNameAmbiguousFieldOcc :: AmbiguousFieldOcc (GhcPass p) -> RdrName
rdrNameAmbiguousFieldOcc (Unambiguous _ (L _ rdr)) = rdr
rdrNameAmbiguousFieldOcc (Ambiguous   _ (L _ rdr)) = rdr
rdrNameAmbiguousFieldOcc (XAmbiguousFieldOcc nec)
  = noExtCon nec
 
selectorAmbiguousFieldOcc :: AmbiguousFieldOcc GhcTc -> Id
selectorAmbiguousFieldOcc (Unambiguous sel _) = sel
selectorAmbiguousFieldOcc (Ambiguous   sel _) = sel
selectorAmbiguousFieldOcc (XAmbiguousFieldOcc nec)
  = noExtCon nec
 
unambiguousFieldOcc :: AmbiguousFieldOcc GhcTc -> FieldOcc GhcTc
unambiguousFieldOcc (Unambiguous rdr sel) = FieldOcc rdr sel
unambiguousFieldOcc (Ambiguous   rdr sel) = FieldOcc rdr sel
unambiguousFieldOcc (XAmbiguousFieldOcc nec) = noExtCon nec
 
ambiguousFieldOcc :: FieldOcc GhcTc -> AmbiguousFieldOcc GhcTc
ambiguousFieldOcc (FieldOcc sel rdr) = Unambiguous sel rdr
ambiguousFieldOcc (XFieldOcc nec) = noExtCon nec
 
{-
************************************************************************
*                                                                      *
\subsection{Pretty printing}
*                                                                      *
************************************************************************
-}
 
instance (p ~ GhcPass pass, OutputableBndrId p) => Outputable (HsType p) where
    ppr ty = pprHsType ty
 
instance Outputable HsTyLit where
    ppr = ppr_tylit
 
instance (p ~ GhcPass pass, OutputableBndrId p)
       => Outputable (LHsQTyVars p) where
    ppr (HsQTvs { hsq_explicit = tvs }) = interppSP tvs
    ppr (XLHsQTyVars x) = ppr x
 
instance (p ~ GhcPass pass, OutputableBndrId p)
       => Outputable (HsTyVarBndr p) where
    ppr (UserTyVar _ n)     = ppr n
    ppr (KindedTyVar _ n k) = parens $ hsep [ppr n, dcolon, ppr k]
    ppr (XTyVarBndr n)      = ppr n
 
instance (p ~ GhcPass pass,Outputable thing)
       => Outputable (HsImplicitBndrs p thing) where
    ppr (HsIB { hsib_body = ty }) = ppr ty
    ppr (XHsImplicitBndrs x) = ppr x
 
instance (p ~ GhcPass pass,Outputable thing)
       => Outputable (HsWildCardBndrs p thing) where
    ppr (HsWC { hswc_body = ty }) = ppr ty
    ppr (XHsWildCardBndrs x) = ppr x
 
pprAnonWildCard :: SDoc
pprAnonWildCard = char '_'
 
-- | Prints a forall; When passed an empty list, prints @forall .@/@forall ->@
-- only when @-dppr-debug@ is enabled.
pprHsForAll :: (OutputableBndrId (GhcPass p))
            => ForallVisFlag -> [LHsTyVarBndr (GhcPass p)]
            -> LHsContext (GhcPass p) -> SDoc
pprHsForAll = pprHsForAllExtra Nothing
 
-- | Version of 'pprHsForAll' that can also print an extra-constraints
-- wildcard, e.g. @_ => a -> Bool@ or @(Show a, _) => a -> String@. This
-- underscore will be printed when the 'Maybe SrcSpan' argument is a 'Just'
-- containing the location of the extra-constraints wildcard. A special
-- function for this is needed, as the extra-constraints wildcard is removed
-- from the actual context and type, and stored in a separate field, thus just
-- printing the type will not print the extra-constraints wildcard.
pprHsForAllExtra :: (OutputableBndrId (GhcPass p))
                 => Maybe SrcSpan -> ForallVisFlag
                 -> [LHsTyVarBndr (GhcPass p)]
                 -> LHsContext (GhcPass p) -> SDoc
pprHsForAllExtra extra fvf qtvs cxt
  = pp_forall <+> pprLHsContextExtra (isJust extra) cxt
  where
    pp_forall | null qtvs = whenPprDebug (forAllLit <> separator)
              | otherwise = forAllLit <+> interppSP qtvs <> separator
 
    separator = ppr_forall_separator fvf
 
-- | Version of 'pprHsForAll' or 'pprHsForAllExtra' that will always print
-- @forall.@ when passed @Just []@. Prints nothing if passed 'Nothing'
pprHsExplicitForAll :: (OutputableBndrId (GhcPass p))
                    => ForallVisFlag
                    -> Maybe [LHsTyVarBndr (GhcPass p)] -> SDoc
pprHsExplicitForAll fvf (Just qtvs) = forAllLit <+> interppSP qtvs
                                                 <> ppr_forall_separator fvf
pprHsExplicitForAll _   Nothing     = empty
 
-- | Prints an arrow for visible @forall@s (e.g., @forall a ->@) and a dot for
-- invisible @forall@s (e.g., @forall a.@).
ppr_forall_separator :: ForallVisFlag -> SDoc
ppr_forall_separator ForallVis   = space <> arrow
ppr_forall_separator ForallInvis = dot
 
pprLHsContext :: (OutputableBndrId (GhcPass p))
              => LHsContext (GhcPass p) -> SDoc
pprLHsContext lctxt
  | null (unLoc lctxt) = empty
  | otherwise          = pprLHsContextAlways lctxt
 
-- For use in a HsQualTy, which always gets printed if it exists.
pprLHsContextAlways :: (OutputableBndrId (GhcPass p))
                    => LHsContext (GhcPass p) -> SDoc
pprLHsContextAlways (L _ ctxt)
  = case ctxt of
      []       -> parens empty             <+> darrow
      [L _ ty] -> ppr_mono_ty ty           <+> darrow
      _        -> parens (interpp'SP ctxt) <+> darrow
 
-- True <=> print an extra-constraints wildcard, e.g. @(Show a, _) =>@
pprLHsContextExtra :: (OutputableBndrId (GhcPass p))
                   => Bool -> LHsContext (GhcPass p) -> SDoc
pprLHsContextExtra show_extra lctxt@(L _ ctxt)
  | not show_extra = pprLHsContext lctxt
  | null ctxt      = char '_' <+> darrow
  | otherwise      = parens (sep (punctuate comma ctxt')) <+> darrow
  where
    ctxt' = map ppr ctxt ++ [char '_']
 
pprConDeclFields :: (OutputableBndrId (GhcPass p))
                 => [LConDeclField (GhcPass p)] -> SDoc
pprConDeclFields fields = braces (sep (punctuate comma (map ppr_fld fields)))
  where
    ppr_fld (L _ (ConDeclField { cd_fld_names = ns, cd_fld_type = ty,
                                 cd_fld_doc = doc }))
        = ppr_names ns <+> dcolon <+> ppr ty <+> ppr_mbDoc doc
    ppr_fld (L _ (XConDeclField x)) = ppr x
    ppr_names [n] = ppr n
    ppr_names ns = sep (punctuate comma (map ppr ns))
 
{-
Note [Printing KindedTyVars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#3830 reminded me that we should really only print the kind
signature on a KindedTyVar if the kind signature was put there by the
programmer.  During kind inference GHC now adds a PostTcKind to UserTyVars,
rather than converting to KindedTyVars as before.
 
(As it happens, the message in #3830 comes out a different way now,
and the problem doesn't show up; but having the flag on a KindedTyVar
seems like the Right Thing anyway.)
-}
 
-- Printing works more-or-less as for Types
 
pprHsType :: (OutputableBndrId (GhcPass p)) => HsType (GhcPass p) -> SDoc
pprHsType ty = ppr_mono_ty ty
 
ppr_mono_lty :: (OutputableBndrId (GhcPass p)) => LHsType (GhcPass p) -> SDoc
ppr_mono_lty ty = ppr_mono_ty (unLoc ty)
 
ppr_mono_ty :: (OutputableBndrId (GhcPass p)) => HsType (GhcPass p) -> SDoc
ppr_mono_ty (HsForAllTy { hst_fvf = fvf, hst_bndrs = tvs, hst_body = ty })
  = sep [pprHsForAll fvf tvs noLHsContext, ppr_mono_lty ty]
 
ppr_mono_ty (HsQualTy { hst_ctxt = ctxt, hst_body = ty })
  = sep [pprLHsContextAlways ctxt, ppr_mono_lty ty]
 
ppr_mono_ty (HsBangTy _ b ty)   = ppr b <> ppr_mono_lty ty
ppr_mono_ty (HsRecTy _ flds)      = pprConDeclFields flds
ppr_mono_ty (HsTyVar _ prom (L _ name))
  | isPromoted prom = quote (pprPrefixOcc name)
  | otherwise       = pprPrefixOcc name
ppr_mono_ty (HsFunTy _ ty1 ty2)   = ppr_fun_ty ty1 ty2
ppr_mono_ty (HsTupleTy _ con tys) = tupleParens std_con (pprWithCommas ppr tys)
  where std_con = case con of
                    HsUnboxedTuple -> UnboxedTuple
                    _              -> BoxedTuple
ppr_mono_ty (HsSumTy _ tys)
  = tupleParens UnboxedTuple (pprWithBars ppr tys)
ppr_mono_ty (HsKindSig _ ty kind)
  = ppr_mono_lty ty <+> dcolon <+> ppr kind
ppr_mono_ty (HsListTy _ ty)       = brackets (ppr_mono_lty ty)
ppr_mono_ty (HsIParamTy _ n ty)   = (ppr n <+> dcolon <+> ppr_mono_lty ty)
ppr_mono_ty (HsSpliceTy _ s)      = pprSplice s
ppr_mono_ty (HsExplicitListTy _ prom tys)
  | isPromoted prom = quote $ brackets (maybeAddSpace tys $ interpp'SP tys)
  | otherwise       = brackets (interpp'SP tys)
ppr_mono_ty (HsExplicitTupleTy _ tys)
  = quote $ parens (maybeAddSpace tys $ interpp'SP tys)
ppr_mono_ty (HsTyLit _ t)       = ppr_tylit t
ppr_mono_ty (HsWildCardTy {})   = char '_'
 
ppr_mono_ty (HsStarTy _ isUni)  = char (if isUni then '★' else '*')
 
ppr_mono_ty (HsAppTy _ fun_ty arg_ty)
  = hsep [ppr_mono_lty fun_ty, ppr_mono_lty arg_ty]
ppr_mono_ty (HsAppKindTy _ ty k)
  = ppr_mono_lty ty <+> char '@' <> ppr_mono_lty k
ppr_mono_ty (HsOpTy _ ty1 (L _ op) ty2)
  = sep [ ppr_mono_lty ty1
        , sep [pprInfixOcc op, ppr_mono_lty ty2 ] ]
 
ppr_mono_ty (HsParTy _ ty)
  = parens (ppr_mono_lty ty)
  -- Put the parens in where the user did
  -- But we still use the precedence stuff to add parens because
  --    toHsType doesn't put in any HsParTys, so we may still need them
 
ppr_mono_ty (HsDocTy _ ty doc)
  -- AZ: Should we add parens?  Should we introduce "-- ^"?
  = ppr_mono_lty ty <+> ppr (unLoc doc)
  -- we pretty print Haddock comments on types as if they were
  -- postfix operators
 
ppr_mono_ty (XHsType t) = ppr t
 
--------------------------
ppr_fun_ty :: (OutputableBndrId (GhcPass p))
           => LHsType (GhcPass p) -> LHsType (GhcPass p) -> SDoc
ppr_fun_ty ty1 ty2
  = let p1 = ppr_mono_lty ty1
        p2 = ppr_mono_lty ty2
    in
    sep [p1, arrow <+> p2]
 
--------------------------
ppr_tylit :: HsTyLit -> SDoc
ppr_tylit (HsNumTy _ i) = integer i
ppr_tylit (HsStrTy _ s) = text (show s)
 
 
-- | @'hsTypeNeedsParens' p t@ returns 'True' if the type @t@ needs parentheses
-- under precedence @p@.
hsTypeNeedsParens :: PprPrec -> HsType pass -> Bool
hsTypeNeedsParens p = go
  where
    go (HsForAllTy{})        = p >= funPrec
    go (HsQualTy{})          = p >= funPrec
    go (HsBangTy{})          = p > topPrec
    go (HsRecTy{})           = False
    go (HsTyVar{})           = False
    go (HsFunTy{})           = p >= funPrec
    go (HsTupleTy{})         = False
    go (HsSumTy{})           = False
    go (HsKindSig{})         = p >= sigPrec
    go (HsListTy{})          = False
    go (HsIParamTy{})        = p > topPrec
    go (HsSpliceTy{})        = False
    go (HsExplicitListTy{})  = False
    go (HsExplicitTupleTy{}) = False
    go (HsTyLit{})           = False
    go (HsWildCardTy{})      = False
    go (HsStarTy{})          = False
    go (HsAppTy{})           = p >= appPrec
    go (HsAppKindTy{})       = p >= appPrec
    go (HsOpTy{})            = p >= opPrec
    go (HsParTy{})           = False
    go (HsDocTy _ (L _ t) _) = go t
    go (XHsType{})           = False
 
maybeAddSpace :: [LHsType pass] -> SDoc -> SDoc
-- See Note [Printing promoted type constructors]
-- in IfaceType.  This code implements the same
-- logic for printing HsType
maybeAddSpace tys doc
  | (ty : _) <- tys
  , lhsTypeHasLeadingPromotionQuote ty = space <> doc
  | otherwise                          = doc
 
lhsTypeHasLeadingPromotionQuote :: LHsType pass -> Bool
lhsTypeHasLeadingPromotionQuote ty
  = goL ty
  where
    goL (L _ ty) = go ty
 
    go (HsForAllTy{})        = False
    go (HsQualTy{ hst_ctxt = ctxt, hst_body = body})
      | L _ (c:_) <- ctxt    = goL c
      | otherwise            = goL body
    go (HsBangTy{})          = False
    go (HsRecTy{})           = False
    go (HsTyVar _ p _)       = isPromoted p
    go (HsFunTy _ arg _)     = goL arg
    go (HsListTy{})          = False
    go (HsTupleTy{})         = False
    go (HsSumTy{})           = False
    go (HsOpTy _ t1 _ _)     = goL t1
    go (HsKindSig _ t _)     = goL t
    go (HsIParamTy{})        = False
    go (HsSpliceTy{})        = False
    go (HsExplicitListTy _ p _) = isPromoted p
    go (HsExplicitTupleTy{}) = True
    go (HsTyLit{})           = False
    go (HsWildCardTy{})      = False
    go (HsStarTy{})          = False
    go (HsAppTy _ t _)       = goL t
    go (HsAppKindTy _ t _)   = goL t
    go (HsParTy{})           = False
    go (HsDocTy _ t _)       = goL t
    go (XHsType{})           = False
 
-- | @'parenthesizeHsType' p ty@ checks if @'hsTypeNeedsParens' p ty@ is
-- true, and if so, surrounds @ty@ with an 'HsParTy'. Otherwise, it simply
-- returns @ty@.
parenthesizeHsType :: PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
parenthesizeHsType p lty@(L loc ty)
  | hsTypeNeedsParens p ty = L loc (HsParTy NoExt lty)
  | otherwise              = lty
 
-- | @'parenthesizeHsContext' p ctxt@ checks if @ctxt@ is a single constraint
-- @c@ such that @'hsTypeNeedsParens' p c@ is true, and if so, surrounds @c@
-- with an 'HsParTy' to form a parenthesized @ctxt@. Otherwise, it simply
-- returns @ctxt@ unchanged.
parenthesizeHsContext :: PprPrec
                      -> LHsContext (GhcPass p) -> LHsContext (GhcPass p)
parenthesizeHsContext p lctxt@(L loc ctxt) =
  case ctxt of
    [c] -> L loc [parenthesizeHsType p c]
    _   -> lctxt -- Other contexts are already "parenthesized" by virtue of
                 -- being tuples.