summaryrefslogtreecommitdiff
path: root/compiler/GHC/StgToCmm/Prim.hs
blob: 06264099dfa2732454927769fe81db36b4b663d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
 
#if __GLASGOW_HASKELL__ <= 808
-- GHC 8.10 deprecates this flag, but GHC 8.8 needs it
-- emitPrimOp is quite large
{-# OPTIONS_GHC -fmax-pmcheck-iterations=4000000 #-}
#endif
 
----------------------------------------------------------------------------
--
-- Stg to C--: primitive operations
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
 
module GHC.StgToCmm.Prim (
   cgOpApp,
   shouldInlinePrimOp
 ) where
 
#include "HsVersions.h"
 
import GhcPrelude hiding ((<*>))
 
import GHC.StgToCmm.Layout
import GHC.StgToCmm.Foreign
import GHC.StgToCmm.Env
import GHC.StgToCmm.Monad
import GHC.StgToCmm.Utils
import GHC.StgToCmm.Ticky
import GHC.StgToCmm.Heap
import GHC.StgToCmm.Prof ( costCentreFrom )
 
import DynFlags
import GHC.Platform
import BasicTypes
import GHC.Cmm.BlockId
import GHC.Cmm.Graph
import GHC.Stg.Syntax
import GHC.Cmm
import Module   ( rtsUnitId )
import Type     ( Type, tyConAppTyCon )
import TyCon
import GHC.Cmm.CLabel
import GHC.Cmm.Utils
import PrimOp
import GHC.Runtime.Layout
import FastString
import Outputable
import Util
import Data.Maybe
 
import Data.Bits ((.&.), bit)
import Control.Monad (liftM, when, unless)
 
------------------------------------------------------------------------
--      Primitive operations and foreign calls
------------------------------------------------------------------------
 
{- Note [Foreign call results]
   ~~~~~~~~~~~~~~~~~~~~~~~~~~~
A foreign call always returns an unboxed tuple of results, one
of which is the state token.  This seems to happen even for pure
calls.
 
Even if we returned a single result for pure calls, it'd still be
right to wrap it in a singleton unboxed tuple, because the result
might be a Haskell closure pointer, we don't want to evaluate it. -}
 
----------------------------------
cgOpApp :: StgOp        -- The op
        -> [StgArg]     -- Arguments
        -> Type         -- Result type (always an unboxed tuple)
        -> FCode ReturnKind
 
-- Foreign calls
cgOpApp (StgFCallOp fcall ty) stg_args res_ty
  = cgForeignCall fcall ty stg_args res_ty
      -- Note [Foreign call results]
 
cgOpApp (StgPrimOp primop) args res_ty = do
    dflags <- getDynFlags
    cmm_args <- getNonVoidArgAmodes args
    case emitPrimOp dflags primop cmm_args of
        PrimopCmmEmit_External -> do  -- out-of-line
          let fun = CmmLit (CmmLabel (mkRtsPrimOpLabel primop))
          emitCall (NativeNodeCall, NativeReturn) fun cmm_args
 
        PrimopCmmEmit_Raw f -> do
          exprs <- f res_ty
          emitReturn exprs
 
        PrimopCmmEmit_IntoRegs f  -- inline
          | ReturnsPrim VoidRep <- result_info
          -> do f []
                emitReturn []
 
          | ReturnsPrim rep <- result_info
          -> do dflags <- getDynFlags
                res <- newTemp (primRepCmmType dflags rep)
                f [res]
                emitReturn [CmmReg (CmmLocal res)]
 
          | ReturnsAlg tycon <- result_info, isUnboxedTupleTyCon tycon
          -> do (regs, _hints) <- newUnboxedTupleRegs res_ty
                f regs
                emitReturn (map (CmmReg . CmmLocal) regs)
 
          | otherwise -> panic "cgOpApp"
          where
             result_info = getPrimOpResultInfo primop
 
cgOpApp (StgPrimCallOp primcall) args _res_ty
  = do  { cmm_args <- getNonVoidArgAmodes args
        ; let fun = CmmLit (CmmLabel (mkPrimCallLabel primcall))
        ; emitCall (NativeNodeCall, NativeReturn) fun cmm_args }
 
-- | Interpret the argument as an unsigned value, assuming the value
-- is given in two-complement form in the given width.
--
-- Example: @asUnsigned W64 (-1)@ is 18446744073709551615.
--
-- This function is used to work around the fact that many array
-- primops take Int# arguments, but we interpret them as unsigned
-- quantities in the code gen. This means that we have to be careful
-- every time we work on e.g. a CmmInt literal that corresponds to the
-- array size, as it might contain a negative Integer value if the
-- user passed a value larger than 2^(wORD_SIZE_IN_BITS-1) as the Int#
-- literal.
asUnsigned :: Width -> Integer -> Integer
asUnsigned w n = n .&. (bit (widthInBits w) - 1)
 
------------------------------------------------------------------------
--      Emitting code for a primop
------------------------------------------------------------------------
 
shouldInlinePrimOp :: DynFlags -> PrimOp -> [CmmExpr] -> Bool
shouldInlinePrimOp dflags op args = case emitPrimOp dflags op args of
  PrimopCmmEmit_External -> False
  PrimopCmmEmit_IntoRegs _ -> True
  PrimopCmmEmit_Raw _ -> True
 
-- TODO: Several primop implementations (e.g. 'doNewByteArrayOp') use
-- ByteOff (or some other fixed width signed type) to represent
-- array sizes or indices. This means that these will overflow for
-- large enough sizes.
 
-- TODO: Several primops, such as 'copyArray#', only have an inline
-- implementation (below) but could possibly have both an inline
-- implementation and an out-of-line implementation, just like
-- 'newArray#'. This would lower the amount of code generated,
-- hopefully without a performance impact (needs to be measured).
 
-- | The big function handling all the primops.
--
-- In the simple case, there is just one implementation, and we emit that.
--
-- In more complex cases, there is a foreign call (out of line) fallback. This
-- might happen e.g. if there's enough static information, such as statically
-- know arguments.
emitPrimOp
  :: DynFlags
  -> PrimOp            -- ^ The primop
  -> [CmmExpr]         -- ^ The primop arguments
  -> PrimopCmmEmit
emitPrimOp dflags = \case
  NewByteArrayOp_Char -> \case
    [(CmmLit (CmmInt n w))]
      | asUnsigned w n <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone  $ \ [res] -> doNewByteArrayOp res (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  NewArrayOp -> \case
    [(CmmLit (CmmInt n w)), init]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \[res] -> doNewArrayOp res (arrPtrsRep dflags (fromInteger n)) mkMAP_DIRTY_infoLabel
        [ (mkIntExpr dflags (fromInteger n),
           fixedHdrSize dflags + oFFSET_StgMutArrPtrs_ptrs dflags)
        , (mkIntExpr dflags (nonHdrSizeW (arrPtrsRep dflags (fromInteger n))),
           fixedHdrSize dflags + oFFSET_StgMutArrPtrs_size dflags)
        ]
        (fromInteger n) init
    _ -> PrimopCmmEmit_External
 
  CopyArrayOp -> \case
    [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] ->
      opAllDone $ \ [] -> doCopyArrayOp src src_off dst dst_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  CopyMutableArrayOp -> \case
    [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] ->
      opAllDone $ \ [] -> doCopyMutableArrayOp src src_off dst dst_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  CopyArrayArrayOp -> \case
    [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] ->
      opAllDone $ \ [] -> doCopyArrayOp src src_off dst dst_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  CopyMutableArrayArrayOp -> \case
    [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] ->
      opAllDone $ \ [] -> doCopyMutableArrayOp src src_off dst dst_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  CloneArrayOp -> \case
    [src, src_off, (CmmLit (CmmInt n w))]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] -> emitCloneArray mkMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  CloneMutableArrayOp -> \case
    [src, src_off, (CmmLit (CmmInt n w))]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] -> emitCloneArray mkMAP_DIRTY_infoLabel res src src_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  FreezeArrayOp -> \case
    [src, src_off, (CmmLit (CmmInt n w))]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] -> emitCloneArray mkMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  ThawArrayOp -> \case
    [src, src_off, (CmmLit (CmmInt n w))]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] -> emitCloneArray mkMAP_DIRTY_infoLabel res src src_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  NewSmallArrayOp -> \case
    [(CmmLit (CmmInt n w)), init]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] ->
        doNewArrayOp res (smallArrPtrsRep (fromInteger n)) mkSMAP_DIRTY_infoLabel
        [ (mkIntExpr dflags (fromInteger n),
           fixedHdrSize dflags + oFFSET_StgSmallMutArrPtrs_ptrs dflags)
        ]
        (fromInteger n) init
    _ -> PrimopCmmEmit_External
 
  CopySmallArrayOp -> \case
    [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] ->
      opAllDone $ \ [] -> doCopySmallArrayOp src src_off dst dst_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  CopySmallMutableArrayOp -> \case
    [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] ->
      opAllDone $ \ [] -> doCopySmallMutableArrayOp src src_off dst dst_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  CloneSmallArrayOp -> \case
    [src, src_off, (CmmLit (CmmInt n w))]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] -> emitCloneSmallArray mkSMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  CloneSmallMutableArrayOp -> \case
    [src, src_off, (CmmLit (CmmInt n w))]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] -> emitCloneSmallArray mkSMAP_DIRTY_infoLabel res src src_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  FreezeSmallArrayOp -> \case
    [src, src_off, (CmmLit (CmmInt n w))]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] -> emitCloneSmallArray mkSMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
  ThawSmallArrayOp -> \case
    [src, src_off, (CmmLit (CmmInt n w))]
      | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags)
      -> opAllDone $ \ [res] -> emitCloneSmallArray mkSMAP_DIRTY_infoLabel res src src_off (fromInteger n)
    _ -> PrimopCmmEmit_External
 
-- First we handle various awkward cases specially.
 
  ParOp -> \[arg] -> opAllDone $ \[res] -> do
    -- for now, just implement this in a C function
    -- later, we might want to inline it.
    emitCCall
        [(res,NoHint)]
        (CmmLit (CmmLabel (mkForeignLabel (fsLit "newSpark") Nothing ForeignLabelInExternalPackage IsFunction)))
        [(baseExpr, AddrHint), (arg,AddrHint)]
 
  SparkOp -> \[arg] -> opAllDone $ \[res] -> do
    -- returns the value of arg in res.  We're going to therefore
    -- refer to arg twice (once to pass to newSpark(), and once to
    -- assign to res), so put it in a temporary.
    tmp <- assignTemp arg
    tmp2 <- newTemp (bWord dflags)
    emitCCall
        [(tmp2,NoHint)]
        (CmmLit (CmmLabel (mkForeignLabel (fsLit "newSpark") Nothing ForeignLabelInExternalPackage IsFunction)))
        [(baseExpr, AddrHint), ((CmmReg (CmmLocal tmp)), AddrHint)]
    emitAssign (CmmLocal res) (CmmReg (CmmLocal tmp))
 
  GetCCSOfOp -> \[arg] -> opAllDone $ \[res] -> do
    let
      val
       | gopt Opt_SccProfilingOn dflags = costCentreFrom dflags (cmmUntag dflags arg)
       | otherwise                      = CmmLit (zeroCLit dflags)
    emitAssign (CmmLocal res) val
 
  GetCurrentCCSOp -> \[_] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) cccsExpr
 
  MyThreadIdOp -> \[] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) currentTSOExpr
 
  ReadMutVarOp -> \[mutv] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) (cmmLoadIndexW dflags mutv (fixedHdrSizeW dflags) (gcWord dflags))
 
  WriteMutVarOp -> \[mutv, var] -> opAllDone $ \res@[] -> do
    old_val <- CmmLocal <$> newTemp (cmmExprType dflags var)
    emitAssign old_val (cmmLoadIndexW dflags mutv (fixedHdrSizeW dflags) (gcWord dflags))
 
    -- Without this write barrier, other CPUs may see this pointer before
    -- the writes for the closure it points to have occurred.
    -- Note that this also must come after we read the old value to ensure
    -- that the read of old_val comes before another core's write to the
    -- MutVar's value.
    emitPrimCall res MO_WriteBarrier []
    emitStore (cmmOffsetW dflags mutv (fixedHdrSizeW dflags)) var
    emitCCall
            [{-no results-}]
            (CmmLit (CmmLabel mkDirty_MUT_VAR_Label))
            [(baseExpr, AddrHint), (mutv, AddrHint), (CmmReg old_val, AddrHint)]
 
--  #define sizzeofByteArrayzh(r,a) \
--     r = ((StgArrBytes *)(a))->bytes
  SizeofByteArrayOp -> \[arg] -> opAllDone $ \[res] -> do
    emit $ mkAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags))
 
--  #define sizzeofMutableByteArrayzh(r,a) \
--      r = ((StgArrBytes *)(a))->bytes
  SizeofMutableByteArrayOp -> emitPrimOp dflags SizeofByteArrayOp
 
--  #define getSizzeofMutableByteArrayzh(r,a) \
--      r = ((StgArrBytes *)(a))->bytes
  GetSizeofMutableByteArrayOp -> \[arg] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags))
 
 
--  #define touchzh(o)                  /* nothing */
  TouchOp -> \args@[_] -> opAllDone $ \res@[] -> do
    emitPrimCall res MO_Touch args
 
--  #define byteArrayContentszh(r,a) r = BYTE_ARR_CTS(a)
  ByteArrayContents_Char -> \[arg] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) (cmmOffsetB dflags arg (arrWordsHdrSize dflags))
 
--  #define stableNameToIntzh(r,s)   (r = ((StgStableName *)s)->sn)
  StableNameToIntOp -> \[arg] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags))
 
  ReallyUnsafePtrEqualityOp -> \[arg1, arg2] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) (CmmMachOp (mo_wordEq dflags) [arg1,arg2])
 
--  #define addrToHValuezh(r,a) r=(P_)a
  AddrToAnyOp -> \[arg] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) arg
 
--  #define hvalueToAddrzh(r, a) r=(W_)a
  AnyToAddrOp -> \[arg] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) arg
 
{- Freezing arrays-of-ptrs requires changing an info table, for the
   benefit of the generational collector.  It needs to scavenge mutable
   objects, even if they are in old space.  When they become immutable,
   they can be removed from this scavenge list.  -}
 
--  #define unsafeFreezzeArrayzh(r,a)
--      {
--        SET_INFO((StgClosure *)a,&stg_MUT_ARR_PTRS_FROZEN_DIRTY_info);
--        r = a;
--      }
  UnsafeFreezeArrayOp -> \[arg] -> opAllDone $ \[res] -> do
    emit $ catAGraphs
      [ setInfo arg (CmmLit (CmmLabel mkMAP_FROZEN_DIRTY_infoLabel)),
        mkAssign (CmmLocal res) arg ]
  UnsafeFreezeArrayArrayOp -> \[arg] -> opAllDone $ \[res] -> do
    emit $ catAGraphs
      [ setInfo arg (CmmLit (CmmLabel mkMAP_FROZEN_DIRTY_infoLabel)),
        mkAssign (CmmLocal res) arg ]
  UnsafeFreezeSmallArrayOp -> \[arg] -> opAllDone $ \[res] -> do
    emit $ catAGraphs
      [ setInfo arg (CmmLit (CmmLabel mkSMAP_FROZEN_DIRTY_infoLabel)),
        mkAssign (CmmLocal res) arg ]
 
--  #define unsafeFreezzeByteArrayzh(r,a)       r=(a)
  UnsafeFreezeByteArrayOp -> \[arg] -> opAllDone $ \[res] -> do
    emitAssign (CmmLocal res) arg
 
-- Reading/writing pointer arrays
 
  ReadArrayOp -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadPtrArrayOp res obj ix
  IndexArrayOp -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadPtrArrayOp res obj ix
  WriteArrayOp -> \[obj, ix, v] -> opAllDone $ \[] -> do
    doWritePtrArrayOp obj ix v
 
  IndexArrayArrayOp_ByteArray -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadPtrArrayOp res obj ix
  IndexArrayArrayOp_ArrayArray -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadPtrArrayOp res obj ix
  ReadArrayArrayOp_ByteArray -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadPtrArrayOp res obj ix
  ReadArrayArrayOp_MutableByteArray -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadPtrArrayOp res obj ix
  ReadArrayArrayOp_ArrayArray -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadPtrArrayOp res obj ix
  ReadArrayArrayOp_MutableArrayArray -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadPtrArrayOp res obj ix
  WriteArrayArrayOp_ByteArray -> \[obj,ix,v] -> opAllDone $ \[] -> do
    doWritePtrArrayOp obj ix v
  WriteArrayArrayOp_MutableByteArray -> \[obj,ix,v] -> opAllDone $ \[] -> do
    doWritePtrArrayOp obj ix v
  WriteArrayArrayOp_ArrayArray -> \[obj,ix,v] -> opAllDone $ \[] -> do
    doWritePtrArrayOp obj ix v
  WriteArrayArrayOp_MutableArrayArray -> \[obj,ix,v] -> opAllDone $ \[] -> do
    doWritePtrArrayOp obj ix v
 
  ReadSmallArrayOp -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadSmallPtrArrayOp res obj ix
  IndexSmallArrayOp -> \[obj, ix] -> opAllDone $ \[res] -> do
    doReadSmallPtrArrayOp res obj ix
  WriteSmallArrayOp -> \[obj,ix,v] -> opAllDone $ \[] -> do
    doWriteSmallPtrArrayOp obj ix v
 
-- Getting the size of pointer arrays
 
  SizeofArrayOp -> \[arg] -> opAllDone $ \[res] -> do
    emit $ mkAssign (CmmLocal res) (cmmLoadIndexW dflags arg
      (fixedHdrSizeW dflags + bytesToWordsRoundUp dflags (oFFSET_StgMutArrPtrs_ptrs dflags))
        (bWord dflags))
  SizeofMutableArrayOp -> emitPrimOp dflags SizeofArrayOp
  SizeofArrayArrayOp -> emitPrimOp dflags SizeofArrayOp
  SizeofMutableArrayArrayOp -> emitPrimOp dflags SizeofArrayOp
  SizeofSmallArrayOp -> \[arg] -> opAllDone $ \[res] -> do
    emit $ mkAssign (CmmLocal res)
     (cmmLoadIndexW dflags arg
     (fixedHdrSizeW dflags + bytesToWordsRoundUp dflags (oFFSET_StgSmallMutArrPtrs_ptrs dflags))
        (bWord dflags))
 
  SizeofSmallMutableArrayOp -> emitPrimOp dflags SizeofSmallArrayOp
  GetSizeofSmallMutableArrayOp -> emitPrimOp dflags SizeofSmallArrayOp
 
-- IndexXXXoffAddr
 
  IndexOffAddrOp_Char -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_8ToWord dflags)) b8 res args
  IndexOffAddrOp_WideChar -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_32ToWord dflags)) b32 res args
  IndexOffAddrOp_Int -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing (bWord dflags) res args
  IndexOffAddrOp_Word -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing (bWord dflags) res args
  IndexOffAddrOp_Addr -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing (bWord dflags) res args
  IndexOffAddrOp_Float -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing f32 res args
  IndexOffAddrOp_Double -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing f64 res args
  IndexOffAddrOp_StablePtr -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing (bWord dflags) res args
  IndexOffAddrOp_Int8 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_s_8ToWord dflags)) b8  res args
  IndexOffAddrOp_Int16 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_s_16ToWord dflags)) b16 res args
  IndexOffAddrOp_Int32 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_s_32ToWord dflags)) b32 res args
  IndexOffAddrOp_Int64 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing b64 res args
  IndexOffAddrOp_Word8 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_8ToWord dflags)) b8  res args
  IndexOffAddrOp_Word16 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_16ToWord dflags)) b16 res args
  IndexOffAddrOp_Word32 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_32ToWord dflags)) b32 res args
  IndexOffAddrOp_Word64 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing b64 res args
 
-- ReadXXXoffAddr, which are identical, for our purposes, to IndexXXXoffAddr.
 
  ReadOffAddrOp_Char -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_8ToWord dflags)) b8 res args
  ReadOffAddrOp_WideChar -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_32ToWord dflags)) b32 res args
  ReadOffAddrOp_Int -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing (bWord dflags) res args
  ReadOffAddrOp_Word -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing (bWord dflags) res args
  ReadOffAddrOp_Addr -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing (bWord dflags) res args
  ReadOffAddrOp_Float -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing f32 res args
  ReadOffAddrOp_Double -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing f64 res args
  ReadOffAddrOp_StablePtr -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing (bWord dflags) res args
  ReadOffAddrOp_Int8 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_s_8ToWord dflags)) b8  res args
  ReadOffAddrOp_Int16 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_s_16ToWord dflags)) b16 res args
  ReadOffAddrOp_Int32 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_s_32ToWord dflags)) b32 res args
  ReadOffAddrOp_Int64 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing b64 res args
  ReadOffAddrOp_Word8 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_8ToWord dflags)) b8  res args
  ReadOffAddrOp_Word16 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_16ToWord dflags)) b16 res args
  ReadOffAddrOp_Word32 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   (Just (mo_u_32ToWord dflags)) b32 res args
  ReadOffAddrOp_Word64 -> \args -> opAllDone $ \res -> do
    doIndexOffAddrOp   Nothing b64 res args
 
-- IndexXXXArray
 
  IndexByteArrayOp_Char -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_8ToWord dflags)) b8 res args
  IndexByteArrayOp_WideChar -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_32ToWord dflags)) b32 res args
  IndexByteArrayOp_Int -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing (bWord dflags) res args
  IndexByteArrayOp_Word -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing (bWord dflags) res args
  IndexByteArrayOp_Addr -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing (bWord dflags) res args
  IndexByteArrayOp_Float -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing f32 res args
  IndexByteArrayOp_Double -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing f64 res args
  IndexByteArrayOp_StablePtr -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing (bWord dflags) res args
  IndexByteArrayOp_Int8 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_s_8ToWord dflags)) b8  res args
  IndexByteArrayOp_Int16 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_s_16ToWord dflags)) b16  res args
  IndexByteArrayOp_Int32 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_s_32ToWord dflags)) b32  res args
  IndexByteArrayOp_Int64 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing b64  res args
  IndexByteArrayOp_Word8 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_8ToWord dflags)) b8  res args
  IndexByteArrayOp_Word16 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_16ToWord dflags)) b16  res args
  IndexByteArrayOp_Word32 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_32ToWord dflags)) b32  res args
  IndexByteArrayOp_Word64 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing b64  res args
 
-- ReadXXXArray, identical to IndexXXXArray.
 
  ReadByteArrayOp_Char -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_8ToWord dflags)) b8 res args
  ReadByteArrayOp_WideChar -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_32ToWord dflags)) b32 res args
  ReadByteArrayOp_Int -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing (bWord dflags) res args
  ReadByteArrayOp_Word -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing (bWord dflags) res args
  ReadByteArrayOp_Addr -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing (bWord dflags) res args
  ReadByteArrayOp_Float -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing f32 res args
  ReadByteArrayOp_Double -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing f64 res args
  ReadByteArrayOp_StablePtr -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing (bWord dflags) res args
  ReadByteArrayOp_Int8 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_s_8ToWord dflags)) b8  res args
  ReadByteArrayOp_Int16 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_s_16ToWord dflags)) b16  res args
  ReadByteArrayOp_Int32 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_s_32ToWord dflags)) b32  res args
  ReadByteArrayOp_Int64 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing b64  res args
  ReadByteArrayOp_Word8 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_8ToWord dflags)) b8  res args
  ReadByteArrayOp_Word16 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_16ToWord dflags)) b16  res args
  ReadByteArrayOp_Word32 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   (Just (mo_u_32ToWord dflags)) b32  res args
  ReadByteArrayOp_Word64 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOp   Nothing b64  res args
 
-- IndexWord8ArrayAsXXX
 
  IndexByteArrayOp_Word8AsChar -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_u_8ToWord dflags)) b8 b8 res args
  IndexByteArrayOp_Word8AsWideChar -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_u_32ToWord dflags)) b32 b8 res args
  IndexByteArrayOp_Word8AsInt -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing (bWord dflags) b8 res args
  IndexByteArrayOp_Word8AsWord -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing (bWord dflags) b8 res args
  IndexByteArrayOp_Word8AsAddr -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing (bWord dflags) b8 res args
  IndexByteArrayOp_Word8AsFloat -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing f32 b8 res args
  IndexByteArrayOp_Word8AsDouble -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing f64 b8 res args
  IndexByteArrayOp_Word8AsStablePtr -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing (bWord dflags) b8 res args
  IndexByteArrayOp_Word8AsInt16 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_s_16ToWord dflags)) b16 b8 res args
  IndexByteArrayOp_Word8AsInt32 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_s_32ToWord dflags)) b32 b8 res args
  IndexByteArrayOp_Word8AsInt64 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing b64 b8 res args
  IndexByteArrayOp_Word8AsWord16 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_u_16ToWord dflags)) b16 b8 res args
  IndexByteArrayOp_Word8AsWord32 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_u_32ToWord dflags)) b32 b8 res args
  IndexByteArrayOp_Word8AsWord64 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing b64 b8 res args
 
-- ReadInt8ArrayAsXXX, identical to IndexInt8ArrayAsXXX
 
  ReadByteArrayOp_Word8AsChar -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_u_8ToWord dflags)) b8 b8 res args
  ReadByteArrayOp_Word8AsWideChar -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_u_32ToWord dflags)) b32 b8 res args
  ReadByteArrayOp_Word8AsInt -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing (bWord dflags) b8 res args
  ReadByteArrayOp_Word8AsWord -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing (bWord dflags) b8 res args
  ReadByteArrayOp_Word8AsAddr -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing (bWord dflags) b8 res args
  ReadByteArrayOp_Word8AsFloat -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing f32 b8 res args
  ReadByteArrayOp_Word8AsDouble -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing f64 b8 res args
  ReadByteArrayOp_Word8AsStablePtr -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing (bWord dflags) b8 res args
  ReadByteArrayOp_Word8AsInt16 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_s_16ToWord dflags)) b16 b8 res args
  ReadByteArrayOp_Word8AsInt32 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_s_32ToWord dflags)) b32 b8 res args
  ReadByteArrayOp_Word8AsInt64 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing b64 b8 res args
  ReadByteArrayOp_Word8AsWord16 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_u_16ToWord dflags)) b16 b8 res args
  ReadByteArrayOp_Word8AsWord32 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   (Just (mo_u_32ToWord dflags)) b32 b8 res args
  ReadByteArrayOp_Word8AsWord64 -> \args -> opAllDone $ \res -> do
    doIndexByteArrayOpAs   Nothing b64 b8 res args
 
-- WriteXXXoffAddr
 
  WriteOffAddrOp_Char -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp (Just (mo_WordTo8 dflags))  b8 res args
  WriteOffAddrOp_WideChar -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args
  WriteOffAddrOp_Int -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp Nothing (bWord dflags) res args
  WriteOffAddrOp_Word -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp Nothing (bWord dflags) res args
  WriteOffAddrOp_Addr -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp Nothing (bWord dflags) res args
  WriteOffAddrOp_Float -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp Nothing f32 res args
  WriteOffAddrOp_Double -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp Nothing f64 res args
  WriteOffAddrOp_StablePtr -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp Nothing (bWord dflags) res args
  WriteOffAddrOp_Int8 -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp (Just (mo_WordTo8 dflags))  b8 res args
  WriteOffAddrOp_Int16 -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp (Just (mo_WordTo16 dflags)) b16 res args
  WriteOffAddrOp_Int32 -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args
  WriteOffAddrOp_Int64 -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp Nothing b64 res args
  WriteOffAddrOp_Word8 -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp (Just (mo_WordTo8 dflags))  b8 res args
  WriteOffAddrOp_Word16 -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp (Just (mo_WordTo16 dflags)) b16 res args
  WriteOffAddrOp_Word32 -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args
  WriteOffAddrOp_Word64 -> \args -> opAllDone $ \res -> do
    doWriteOffAddrOp Nothing b64 res args
 
-- WriteXXXArray
 
  WriteByteArrayOp_Char -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo8 dflags))  b8 res args
  WriteByteArrayOp_WideChar -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args
  WriteByteArrayOp_Int -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing (bWord dflags) res args
  WriteByteArrayOp_Word -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing (bWord dflags) res args
  WriteByteArrayOp_Addr -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing (bWord dflags) res args
  WriteByteArrayOp_Float -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing f32 res args
  WriteByteArrayOp_Double -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing f64 res args
  WriteByteArrayOp_StablePtr -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing (bWord dflags) res args
  WriteByteArrayOp_Int8 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo8 dflags))  b8 res args
  WriteByteArrayOp_Int16 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b16 res args
  WriteByteArrayOp_Int32 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args
  WriteByteArrayOp_Int64 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b64 res args
  WriteByteArrayOp_Word8 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo8 dflags))  b8  res args
  WriteByteArrayOp_Word16 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b16 res args
  WriteByteArrayOp_Word32 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args
  WriteByteArrayOp_Word64 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b64 res args
 
-- WriteInt8ArrayAsXXX
 
  WriteByteArrayOp_Word8AsChar -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo8 dflags))  b8 res args
  WriteByteArrayOp_Word8AsWideChar -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args
  WriteByteArrayOp_Word8AsInt -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b8 res args
  WriteByteArrayOp_Word8AsWord -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b8 res args
  WriteByteArrayOp_Word8AsAddr -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b8 res args
  WriteByteArrayOp_Word8AsFloat -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b8 res args
  WriteByteArrayOp_Word8AsDouble -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b8 res args
  WriteByteArrayOp_Word8AsStablePtr -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b8 res args
  WriteByteArrayOp_Word8AsInt16 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b8 res args
  WriteByteArrayOp_Word8AsInt32 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args
  WriteByteArrayOp_Word8AsInt64 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b8 res args
  WriteByteArrayOp_Word8AsWord16 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b8 res args
  WriteByteArrayOp_Word8AsWord32 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args
  WriteByteArrayOp_Word8AsWord64 -> \args -> opAllDone $ \res -> do
    doWriteByteArrayOp Nothing b8 res args
 
-- Copying and setting byte arrays
  CopyByteArrayOp -> \[src,src_off,dst,dst_off,n] -> opAllDone $ \[] -> do
    doCopyByteArrayOp src src_off dst dst_off n
  CopyMutableByteArrayOp -> \[src,src_off,dst,dst_off,n] -> opAllDone $ \[] -> do
    doCopyMutableByteArrayOp src src_off dst dst_off n
  CopyByteArrayToAddrOp -> \[src,src_off,dst,n] -> opAllDone $ \[] -> do
    doCopyByteArrayToAddrOp src src_off dst n
  CopyMutableByteArrayToAddrOp -> \[src,src_off,dst,n] -> opAllDone $ \[] -> do
    doCopyMutableByteArrayToAddrOp src src_off dst n
  CopyAddrToByteArrayOp -> \[src,dst,dst_off,n] -> opAllDone $ \[] -> do
    doCopyAddrToByteArrayOp src dst dst_off n
  SetByteArrayOp -> \[ba,off,len,c] -> opAllDone $ \[] -> do
    doSetByteArrayOp ba off len c
 
-- Comparing byte arrays
  CompareByteArraysOp -> \[ba1,ba1_off,ba2,ba2_off,n] -> opAllDone $ \[res] -> do
    doCompareByteArraysOp res ba1 ba1_off ba2 ba2_off n
 
  BSwap16Op -> \[w] -> opAllDone $ \[res] -> do
    emitBSwapCall res w W16
  BSwap32Op -> \[w] -> opAllDone $ \[res] -> do
    emitBSwapCall res w W32
  BSwap64Op -> \[w] -> opAllDone $ \[res] -> do
    emitBSwapCall res w W64
  BSwapOp -> \[w] -> opAllDone $ \[res] -> do
    emitBSwapCall res w (wordWidth dflags)
 
  BRev8Op -> \[w] -> opAllDone $ \[res] -> do
    emitBRevCall res w W8
  BRev16Op -> \[w] -> opAllDone $ \[res] -> do
    emitBRevCall res w W16
  BRev32Op -> \[w] -> opAllDone $ \[res] -> do
    emitBRevCall res w W32
  BRev64Op -> \[w] -> opAllDone $ \[res] -> do
    emitBRevCall res w W64
  BRevOp -> \[w] -> opAllDone $ \[res] -> do
    emitBRevCall res w (wordWidth dflags)
 
-- Population count
  PopCnt8Op -> \[w] -> opAllDone $ \[res] -> do
    emitPopCntCall res w W8
  PopCnt16Op -> \[w] -> opAllDone $ \[res] -> do
    emitPopCntCall res w W16
  PopCnt32Op -> \[w] -> opAllDone $ \[res] -> do
    emitPopCntCall res w W32
  PopCnt64Op -> \[w] -> opAllDone $ \[res] -> do
    emitPopCntCall res w W64
  PopCntOp -> \[w] -> opAllDone $ \[res] -> do
    emitPopCntCall res w (wordWidth dflags)
 
-- Parallel bit deposit
  Pdep8Op -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPdepCall res src mask W8
  Pdep16Op -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPdepCall res src mask W16
  Pdep32Op -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPdepCall res src mask W32
  Pdep64Op -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPdepCall res src mask W64
  PdepOp -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPdepCall res src mask (wordWidth dflags)
 
-- Parallel bit extract
  Pext8Op -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPextCall res src mask W8
  Pext16Op -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPextCall res src mask W16
  Pext32Op -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPextCall res src mask W32
  Pext64Op -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPextCall res src mask W64
  PextOp -> \[src, mask] -> opAllDone $ \[res] -> do
    emitPextCall res src mask (wordWidth dflags)
 
-- count leading zeros
  Clz8Op -> \[w] -> opAllDone $ \[res] -> do
    emitClzCall res w W8
  Clz16Op -> \[w] -> opAllDone $ \[res] -> do
    emitClzCall res w W16
  Clz32Op -> \[w] -> opAllDone $ \[res] -> do
    emitClzCall res w W32
  Clz64Op -> \[w] -> opAllDone $ \[res] -> do
    emitClzCall res w W64
  ClzOp -> \[w] -> opAllDone $ \[res] -> do
    emitClzCall res w (wordWidth dflags)
 
-- count trailing zeros
  Ctz8Op -> \[w] -> opAllDone $ \[res] -> do
    emitCtzCall res w W8
  Ctz16Op -> \[w] -> opAllDone $ \[res] -> do
    emitCtzCall res w W16
  Ctz32Op -> \[w] -> opAllDone $ \[res] -> do
    emitCtzCall res w W32
  Ctz64Op -> \[w] -> opAllDone $ \[res] -> do
    emitCtzCall res w W64
  CtzOp -> \[w] -> opAllDone $ \[res] -> do
    emitCtzCall res w (wordWidth dflags)
 
-- Unsigned int to floating point conversions
  Word2FloatOp -> \[w] -> opAllDone $ \[res] -> do
    emitPrimCall [res] (MO_UF_Conv W32) [w]
  Word2DoubleOp -> \[w] -> opAllDone $ \[res] -> do
    emitPrimCall [res] (MO_UF_Conv W64) [w]
 
-- SIMD primops
  (VecBroadcastOp vcat n w) -> \[e] -> opAllDone $ \[res] -> do
    checkVecCompatibility dflags vcat n w
    doVecPackOp (vecElemInjectCast dflags vcat w) ty zeros (replicate n e) res
   where
    zeros :: CmmExpr
    zeros = CmmLit $ CmmVec (replicate n zero)
 
    zero :: CmmLit
    zero = case vcat of
             IntVec   -> CmmInt 0 w
             WordVec  -> CmmInt 0 w
             FloatVec -> CmmFloat 0 w
 
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecPackOp vcat n w) -> \es -> opAllDone $ \[res] -> do
    checkVecCompatibility dflags vcat n w
    when (es `lengthIsNot` n) $
        panic "emitPrimOp: VecPackOp has wrong number of arguments"
    doVecPackOp (vecElemInjectCast dflags vcat w) ty zeros es res
   where
    zeros :: CmmExpr
    zeros = CmmLit $ CmmVec (replicate n zero)
 
    zero :: CmmLit
    zero = case vcat of
             IntVec   -> CmmInt 0 w
             WordVec  -> CmmInt 0 w
             FloatVec -> CmmFloat 0 w
 
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecUnpackOp vcat n w) -> \[arg] -> opAllDone $ \res -> do
    checkVecCompatibility dflags vcat n w
    when (res `lengthIsNot` n) $
        panic "emitPrimOp: VecUnpackOp has wrong number of results"
    doVecUnpackOp (vecElemProjectCast dflags vcat w) ty arg res
   where
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecInsertOp vcat n w) -> \[v,e,i] -> opAllDone $ \[res] -> do
    checkVecCompatibility dflags vcat n w
    doVecInsertOp (vecElemInjectCast dflags vcat w) ty v e i res
   where
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecIndexByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doIndexByteArrayOp Nothing ty res0 args
   where
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecReadByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doIndexByteArrayOp Nothing ty res0 args
   where
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecWriteByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doWriteByteArrayOp Nothing ty res0 args
   where
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecIndexOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doIndexOffAddrOp Nothing ty res0 args
   where
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecReadOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doIndexOffAddrOp Nothing ty res0 args
   where
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecWriteOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doWriteOffAddrOp Nothing ty res0 args
   where
    ty :: CmmType
    ty = vecVmmType vcat n w
 
  (VecIndexScalarByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doIndexByteArrayOpAs Nothing vecty ty res0 args
   where
    vecty :: CmmType
    vecty = vecVmmType vcat n w
 
    ty :: CmmType
    ty = vecCmmCat vcat w
 
  (VecReadScalarByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doIndexByteArrayOpAs Nothing vecty ty res0 args
   where
    vecty :: CmmType
    vecty = vecVmmType vcat n w
 
    ty :: CmmType
    ty = vecCmmCat vcat w
 
  (VecWriteScalarByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doWriteByteArrayOp Nothing ty res0 args
   where
    ty :: CmmType
    ty = vecCmmCat vcat w
 
  (VecIndexScalarOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doIndexOffAddrOpAs Nothing vecty ty res0 args
   where
    vecty :: CmmType
    vecty = vecVmmType vcat n w
 
    ty :: CmmType
    ty = vecCmmCat vcat w
 
  (VecReadScalarOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doIndexOffAddrOpAs Nothing vecty ty res0 args
   where
    vecty :: CmmType
    vecty = vecVmmType vcat n w
 
    ty :: CmmType
    ty = vecCmmCat vcat w
 
  (VecWriteScalarOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do
    checkVecCompatibility dflags vcat n w
    doWriteOffAddrOp Nothing ty res0 args
   where
    ty :: CmmType
    ty = vecCmmCat vcat w
 
-- Prefetch
  PrefetchByteArrayOp3         -> \args -> opAllDone $ \[] -> do
    doPrefetchByteArrayOp 3  args
  PrefetchMutableByteArrayOp3  -> \args -> opAllDone $ \[] -> do
    doPrefetchMutableByteArrayOp 3  args
  PrefetchAddrOp3              -> \args -> opAllDone $ \[] -> do
    doPrefetchAddrOp  3  args
  PrefetchValueOp3             -> \args -> opAllDone $ \[] -> do
    doPrefetchValueOp 3 args
 
  PrefetchByteArrayOp2         -> \args -> opAllDone $ \[] -> do
    doPrefetchByteArrayOp 2  args
  PrefetchMutableByteArrayOp2  -> \args -> opAllDone $ \[] -> do
    doPrefetchMutableByteArrayOp 2  args
  PrefetchAddrOp2              -> \args -> opAllDone $ \[] -> do
    doPrefetchAddrOp 2  args
  PrefetchValueOp2             -> \args -> opAllDone $ \[] -> do
    doPrefetchValueOp 2 args
  PrefetchByteArrayOp1         -> \args -> opAllDone $ \[] -> do
    doPrefetchByteArrayOp 1  args
  PrefetchMutableByteArrayOp1  -> \args -> opAllDone $ \[] -> do
    doPrefetchMutableByteArrayOp 1  args
  PrefetchAddrOp1              -> \args -> opAllDone $ \[] -> do
    doPrefetchAddrOp 1  args
  PrefetchValueOp1             -> \args -> opAllDone $ \[] -> do
    doPrefetchValueOp 1 args
 
  PrefetchByteArrayOp0         -> \args -> opAllDone $ \[] -> do
    doPrefetchByteArrayOp 0  args
  PrefetchMutableByteArrayOp0  -> \args -> opAllDone $ \[] -> do
    doPrefetchMutableByteArrayOp 0  args
  PrefetchAddrOp0              -> \args -> opAllDone $ \[] -> do
    doPrefetchAddrOp 0  args
  PrefetchValueOp0             -> \args -> opAllDone $ \[] -> do
    doPrefetchValueOp 0 args
 
-- Atomic read-modify-write
  FetchAddByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do
    doAtomicRMW res AMO_Add mba ix (bWord dflags) n
  FetchSubByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do
    doAtomicRMW res AMO_Sub mba ix (bWord dflags) n
  FetchAndByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do
    doAtomicRMW res AMO_And mba ix (bWord dflags) n
  FetchNandByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do
    doAtomicRMW res AMO_Nand mba ix (bWord dflags) n
  FetchOrByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do
    doAtomicRMW res AMO_Or mba ix (bWord dflags) n
  FetchXorByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do
    doAtomicRMW res AMO_Xor mba ix (bWord dflags) n
  AtomicReadByteArrayOp_Int -> \[mba, ix] -> opAllDone $ \[res] -> do
    doAtomicReadByteArray res mba ix (bWord dflags)
  AtomicWriteByteArrayOp_Int -> \[mba, ix, val] -> opAllDone $ \[] -> do
    doAtomicWriteByteArray mba ix (bWord dflags) val
  CasByteArrayOp_Int -> \[mba, ix, old, new] -> opAllDone $ \[res] -> do
    doCasByteArray res mba ix (bWord dflags) old new
 
-- The rest just translate straightforwardly
 
  Int2WordOp      -> \args -> opNop args
  Word2IntOp      -> \args -> opNop args
  Int2AddrOp      -> \args -> opNop args
  Addr2IntOp      -> \args -> opNop args
  ChrOp           -> \args -> opNop args  -- Int# and Char# are rep'd the same
  OrdOp           -> \args -> opNop args
 
  Narrow8IntOp   -> \args -> opNarrow dflags args (MO_SS_Conv, W8)
  Narrow16IntOp  -> \args -> opNarrow dflags args (MO_SS_Conv, W16)
  Narrow32IntOp  -> \args -> opNarrow dflags args (MO_SS_Conv, W32)
  Narrow8WordOp  -> \args -> opNarrow dflags args (MO_UU_Conv, W8)
  Narrow16WordOp -> \args -> opNarrow dflags args (MO_UU_Conv, W16)
  Narrow32WordOp -> \args -> opNarrow dflags args (MO_UU_Conv, W32)
 
  DoublePowerOp  -> \args -> opCallish args MO_F64_Pwr
  DoubleSinOp    -> \args -> opCallish args MO_F64_Sin
  DoubleCosOp    -> \args -> opCallish args MO_F64_Cos
  DoubleTanOp    -> \args -> opCallish args MO_F64_Tan
  DoubleSinhOp   -> \args -> opCallish args MO_F64_Sinh
  DoubleCoshOp   -> \args -> opCallish args MO_F64_Cosh
  DoubleTanhOp   -> \args -> opCallish args MO_F64_Tanh
  DoubleAsinOp   -> \args -> opCallish args MO_F64_Asin
  DoubleAcosOp   -> \args -> opCallish args MO_F64_Acos
  DoubleAtanOp   -> \args -> opCallish args MO_F64_Atan
  DoubleAsinhOp  -> \args -> opCallish args MO_F64_Asinh
  DoubleAcoshOp  -> \args -> opCallish args MO_F64_Acosh
  DoubleAtanhOp  -> \args -> opCallish args MO_F64_Atanh
  DoubleLogOp    -> \args -> opCallish args MO_F64_Log
  DoubleLog1POp  -> \args -> opCallish args MO_F64_Log1P
  DoubleExpOp    -> \args -> opCallish args MO_F64_Exp
  DoubleExpM1Op  -> \args -> opCallish args MO_F64_ExpM1
  DoubleSqrtOp   -> \args -> opCallish args MO_F64_Sqrt
 
  FloatPowerOp   -> \args -> opCallish args MO_F32_Pwr
  FloatSinOp     -> \args -> opCallish args MO_F32_Sin
  FloatCosOp     -> \args -> opCallish args MO_F32_Cos
  FloatTanOp     -> \args -> opCallish args MO_F32_Tan
  FloatSinhOp    -> \args -> opCallish args MO_F32_Sinh
  FloatCoshOp    -> \args -> opCallish args MO_F32_Cosh
  FloatTanhOp    -> \args -> opCallish args MO_F32_Tanh
  FloatAsinOp    -> \args -> opCallish args MO_F32_Asin
  FloatAcosOp    -> \args -> opCallish args MO_F32_Acos
  FloatAtanOp    -> \args -> opCallish args MO_F32_Atan
  FloatAsinhOp   -> \args -> opCallish args MO_F32_Asinh
  FloatAcoshOp   -> \args -> opCallish args MO_F32_Acosh
  FloatAtanhOp   -> \args -> opCallish args MO_F32_Atanh
  FloatLogOp     -> \args -> opCallish args MO_F32_Log
  FloatLog1POp   -> \args -> opCallish args MO_F32_Log1P
  FloatExpOp     -> \args -> opCallish args MO_F32_Exp
  FloatExpM1Op   -> \args -> opCallish args MO_F32_ExpM1
  FloatSqrtOp    -> \args -> opCallish args MO_F32_Sqrt
 
-- Native word signless ops
 
  IntAddOp       -> \args -> opTranslate args (mo_wordAdd dflags)
  IntSubOp       -> \args -> opTranslate args (mo_wordSub dflags)
  WordAddOp      -> \args -> opTranslate args (mo_wordAdd dflags)
  WordSubOp      -> \args -> opTranslate args (mo_wordSub dflags)
  AddrAddOp      -> \args -> opTranslate args (mo_wordAdd dflags)
  AddrSubOp      -> \args -> opTranslate args (mo_wordSub dflags)
 
  IntEqOp        -> \args -> opTranslate args (mo_wordEq dflags)
  IntNeOp        -> \args -> opTranslate args (mo_wordNe dflags)
  WordEqOp       -> \args -> opTranslate args (mo_wordEq dflags)
  WordNeOp       -> \args -> opTranslate args (mo_wordNe dflags)
  AddrEqOp       -> \args -> opTranslate args (mo_wordEq dflags)
  AddrNeOp       -> \args -> opTranslate args (mo_wordNe dflags)
 
  AndOp          -> \args -> opTranslate args (mo_wordAnd dflags)
  OrOp           -> \args -> opTranslate args (mo_wordOr dflags)
  XorOp          -> \args -> opTranslate args (mo_wordXor dflags)
  NotOp          -> \args -> opTranslate args (mo_wordNot dflags)
  SllOp          -> \args -> opTranslate args (mo_wordShl dflags)
  SrlOp          -> \args -> opTranslate args (mo_wordUShr dflags)
 
  AddrRemOp      -> \args -> opTranslate args (mo_wordURem dflags)
 
-- Native word signed ops
 
  IntMulOp        -> \args -> opTranslate args (mo_wordMul dflags)
  IntMulMayOfloOp -> \args -> opTranslate args (MO_S_MulMayOflo (wordWidth dflags))
  IntQuotOp       -> \args -> opTranslate args (mo_wordSQuot dflags)
  IntRemOp        -> \args -> opTranslate args (mo_wordSRem dflags)
  IntNegOp        -> \args -> opTranslate args (mo_wordSNeg dflags)
 
  IntGeOp        -> \args -> opTranslate args (mo_wordSGe dflags)
  IntLeOp        -> \args -> opTranslate args (mo_wordSLe dflags)
  IntGtOp        -> \args -> opTranslate args (mo_wordSGt dflags)
  IntLtOp        -> \args -> opTranslate args (mo_wordSLt dflags)
 
  AndIOp         -> \args -> opTranslate args (mo_wordAnd dflags)
  OrIOp          -> \args -> opTranslate args (mo_wordOr dflags)
  XorIOp         -> \args -> opTranslate args (mo_wordXor dflags)
  NotIOp         -> \args -> opTranslate args (mo_wordNot dflags)
  ISllOp         -> \args -> opTranslate args (mo_wordShl dflags)
  ISraOp         -> \args -> opTranslate args (mo_wordSShr dflags)
  ISrlOp         -> \args -> opTranslate args (mo_wordUShr dflags)
 
-- Native word unsigned ops
 
  WordGeOp       -> \args -> opTranslate args (mo_wordUGe dflags)
  WordLeOp       -> \args -> opTranslate args (mo_wordULe dflags)
  WordGtOp       -> \args -> opTranslate args (mo_wordUGt dflags)
  WordLtOp       -> \args -> opTranslate args (mo_wordULt dflags)
 
  WordMulOp      -> \args -> opTranslate args (mo_wordMul dflags)
  WordQuotOp     -> \args -> opTranslate args (mo_wordUQuot dflags)
  WordRemOp      -> \args -> opTranslate args (mo_wordURem dflags)
 
  AddrGeOp       -> \args -> opTranslate args (mo_wordUGe dflags)
  AddrLeOp       -> \args -> opTranslate args (mo_wordULe dflags)
  AddrGtOp       -> \args -> opTranslate args (mo_wordUGt dflags)
  AddrLtOp       -> \args -> opTranslate args (mo_wordULt dflags)
 
-- Int8# signed ops
 
  Int8Extend     -> \args -> opTranslate args (MO_SS_Conv W8 (wordWidth dflags))
  Int8Narrow     -> \args -> opTranslate args (MO_SS_Conv (wordWidth dflags) W8)
  Int8NegOp      -> \args -> opTranslate args (MO_S_Neg W8)
  Int8AddOp      -> \args -> opTranslate args (MO_Add W8)
  Int8SubOp      -> \args -> opTranslate args (MO_Sub W8)
  Int8MulOp      -> \args -> opTranslate args (MO_Mul W8)
  Int8QuotOp     -> \args -> opTranslate args (MO_S_Quot W8)
  Int8RemOp      -> \args -> opTranslate args (MO_S_Rem W8)
 
  Int8EqOp       -> \args -> opTranslate args (MO_Eq W8)
  Int8GeOp       -> \args -> opTranslate args (MO_S_Ge W8)
  Int8GtOp       -> \args -> opTranslate args (MO_S_Gt W8)
  Int8LeOp       -> \args -> opTranslate args (MO_S_Le W8)
  Int8LtOp       -> \args -> opTranslate args (MO_S_Lt W8)
  Int8NeOp       -> \args -> opTranslate args (MO_Ne W8)
 
-- Word8# unsigned ops
 
  Word8Extend     -> \args -> opTranslate args (MO_UU_Conv W8 (wordWidth dflags))
  Word8Narrow     -> \args -> opTranslate args (MO_UU_Conv (wordWidth dflags) W8)
  Word8NotOp      -> \args -> opTranslate args (MO_Not W8)
  Word8AddOp      -> \args -> opTranslate args (MO_Add W8)
  Word8SubOp      -> \args -> opTranslate args (MO_Sub W8)
  Word8MulOp      -> \args -> opTranslate args (MO_Mul W8)
  Word8QuotOp     -> \args -> opTranslate args (MO_U_Quot W8)
  Word8RemOp      -> \args -> opTranslate args (MO_U_Rem W8)
 
  Word8EqOp       -> \args -> opTranslate args (MO_Eq W8)
  Word8GeOp       -> \args -> opTranslate args (MO_U_Ge W8)
  Word8GtOp       -> \args -> opTranslate args (MO_U_Gt W8)
  Word8LeOp       -> \args -> opTranslate args (MO_U_Le W8)
  Word8LtOp       -> \args -> opTranslate args (MO_U_Lt W8)
  Word8NeOp       -> \args -> opTranslate args (MO_Ne W8)
 
-- Int16# signed ops
 
  Int16Extend     -> \args -> opTranslate args (MO_SS_Conv W16 (wordWidth dflags))
  Int16Narrow     -> \args -> opTranslate args (MO_SS_Conv (wordWidth dflags) W16)
  Int16NegOp      -> \args -> opTranslate args (MO_S_Neg W16)
  Int16AddOp      -> \args -> opTranslate args (MO_Add W16)
  Int16SubOp      -> \args -> opTranslate args (MO_Sub W16)
  Int16MulOp      -> \args -> opTranslate args (MO_Mul W16)
  Int16QuotOp     -> \args -> opTranslate args (MO_S_Quot W16)
  Int16RemOp      -> \args -> opTranslate args (MO_S_Rem W16)
 
  Int16EqOp       -> \args -> opTranslate args (MO_Eq W16)
  Int16GeOp       -> \args -> opTranslate args (MO_S_Ge W16)
  Int16GtOp       -> \args -> opTranslate args (MO_S_Gt W16)
  Int16LeOp       -> \args -> opTranslate args (MO_S_Le W16)
  Int16LtOp       -> \args -> opTranslate args (MO_S_Lt W16)
  Int16NeOp       -> \args -> opTranslate args (MO_Ne W16)
 
-- Word16# unsigned ops
 
  Word16Extend     -> \args -> opTranslate args (MO_UU_Conv W16 (wordWidth dflags))
  Word16Narrow     -> \args -> opTranslate args (MO_UU_Conv (wordWidth dflags) W16)
  Word16NotOp      -> \args -> opTranslate args (MO_Not W16)
  Word16AddOp      -> \args -> opTranslate args (MO_Add W16)
  Word16SubOp      -> \args -> opTranslate args (MO_Sub W16)
  Word16MulOp      -> \args -> opTranslate args (MO_Mul W16)
  Word16QuotOp     -> \args -> opTranslate args (MO_U_Quot W16)
  Word16RemOp      -> \args -> opTranslate args (MO_U_Rem W16)
 
  Word16EqOp       -> \args -> opTranslate args (MO_Eq W16)
  Word16GeOp       -> \args -> opTranslate args (MO_U_Ge W16)
  Word16GtOp       -> \args -> opTranslate args (MO_U_Gt W16)
  Word16LeOp       -> \args -> opTranslate args (MO_U_Le W16)
  Word16LtOp       -> \args -> opTranslate args (MO_U_Lt W16)
  Word16NeOp       -> \args -> opTranslate args (MO_Ne W16)
 
-- Char# ops
 
  CharEqOp       -> \args -> opTranslate args (MO_Eq (wordWidth dflags))
  CharNeOp       -> \args -> opTranslate args (MO_Ne (wordWidth dflags))
  CharGeOp       -> \args -> opTranslate args (MO_U_Ge (wordWidth dflags))
  CharLeOp       -> \args -> opTranslate args (MO_U_Le (wordWidth dflags))
  CharGtOp       -> \args -> opTranslate args (MO_U_Gt (wordWidth dflags))
  CharLtOp       -> \args -> opTranslate args (MO_U_Lt (wordWidth dflags))
 
-- Double ops
 
  DoubleEqOp     -> \args -> opTranslate args (MO_F_Eq W64)
  DoubleNeOp     -> \args -> opTranslate args (MO_F_Ne W64)
  DoubleGeOp     -> \args -> opTranslate args (MO_F_Ge W64)
  DoubleLeOp     -> \args -> opTranslate args (MO_F_Le W64)
  DoubleGtOp     -> \args -> opTranslate args (MO_F_Gt W64)
  DoubleLtOp     -> \args -> opTranslate args (MO_F_Lt W64)
 
  DoubleAddOp    -> \args -> opTranslate args (MO_F_Add W64)
  DoubleSubOp    -> \args -> opTranslate args (MO_F_Sub W64)
  DoubleMulOp    -> \args -> opTranslate args (MO_F_Mul W64)
  DoubleDivOp    -> \args -> opTranslate args (MO_F_Quot W64)
  DoubleNegOp    -> \args -> opTranslate args (MO_F_Neg W64)
 
-- Float ops
 
  FloatEqOp     -> \args -> opTranslate args (MO_F_Eq W32)
  FloatNeOp     -> \args -> opTranslate args (MO_F_Ne W32)
  FloatGeOp     -> \args -> opTranslate args (MO_F_Ge W32)
  FloatLeOp     -> \args -> opTranslate args (MO_F_Le W32)
  FloatGtOp     -> \args -> opTranslate args (MO_F_Gt W32)
  FloatLtOp     -> \args -> opTranslate args (MO_F_Lt W32)
 
  FloatAddOp    -> \args -> opTranslate args (MO_F_Add  W32)
  FloatSubOp    -> \args -> opTranslate args (MO_F_Sub  W32)
  FloatMulOp    -> \args -> opTranslate args (MO_F_Mul  W32)
  FloatDivOp    -> \args -> opTranslate args (MO_F_Quot W32)
  FloatNegOp    -> \args -> opTranslate args (MO_F_Neg  W32)
 
-- Vector ops
 
  (VecAddOp  FloatVec n w) -> \args -> opTranslate args (MO_VF_Add  n w)
  (VecSubOp  FloatVec n w) -> \args -> opTranslate args (MO_VF_Sub  n w)
  (VecMulOp  FloatVec n w) -> \args -> opTranslate args (MO_VF_Mul  n w)
  (VecDivOp  FloatVec n w) -> \args -> opTranslate args (MO_VF_Quot n w)
  (VecQuotOp FloatVec _ _) -> \_ -> panic "unsupported primop"
  (VecRemOp  FloatVec _ _) -> \_ -> panic "unsupported primop"
  (VecNegOp  FloatVec n w) -> \args -> opTranslate args (MO_VF_Neg  n w)
 
  (VecAddOp  IntVec n w) -> \args -> opTranslate args (MO_V_Add   n w)
  (VecSubOp  IntVec n w) -> \args -> opTranslate args (MO_V_Sub   n w)
  (VecMulOp  IntVec n w) -> \args -> opTranslate args (MO_V_Mul   n w)
  (VecDivOp  IntVec _ _) -> \_ -> panic "unsupported primop"
  (VecQuotOp IntVec n w) -> \args -> opTranslate args (MO_VS_Quot n w)
  (VecRemOp  IntVec n w) -> \args -> opTranslate args (MO_VS_Rem  n w)
  (VecNegOp  IntVec n w) -> \args -> opTranslate args (MO_VS_Neg  n w)
 
  (VecAddOp  WordVec n w) -> \args -> opTranslate args (MO_V_Add   n w)
  (VecSubOp  WordVec n w) -> \args -> opTranslate args (MO_V_Sub   n w)
  (VecMulOp  WordVec n w) -> \args -> opTranslate args (MO_V_Mul   n w)
  (VecDivOp  WordVec _ _) -> \_ -> panic "unsupported primop"
  (VecQuotOp WordVec n w) -> \args -> opTranslate args (MO_VU_Quot n w)
  (VecRemOp  WordVec n w) -> \args -> opTranslate args (MO_VU_Rem  n w)
  (VecNegOp  WordVec _ _) -> \_ -> panic "unsupported primop"
 
-- Conversions
 
  Int2DoubleOp   -> \args -> opTranslate args (MO_SF_Conv (wordWidth dflags) W64)
  Double2IntOp   -> \args -> opTranslate args (MO_FS_Conv W64 (wordWidth dflags))
 
  Int2FloatOp    -> \args -> opTranslate args (MO_SF_Conv (wordWidth dflags) W32)
  Float2IntOp    -> \args -> opTranslate args (MO_FS_Conv W32 (wordWidth dflags))
 
  Float2DoubleOp -> \args -> opTranslate args (MO_FF_Conv W32 W64)
  Double2FloatOp -> \args -> opTranslate args (MO_FF_Conv W64 W32)
 
-- Word comparisons masquerading as more exotic things.
 
  SameMutVarOp            -> \args -> opTranslate args (mo_wordEq dflags)
  SameMVarOp              -> \args -> opTranslate args (mo_wordEq dflags)
  SameMutableArrayOp      -> \args -> opTranslate args (mo_wordEq dflags)
  SameMutableByteArrayOp  -> \args -> opTranslate args (mo_wordEq dflags)
  SameMutableArrayArrayOp -> \args -> opTranslate args (mo_wordEq dflags)
  SameSmallMutableArrayOp -> \args -> opTranslate args (mo_wordEq dflags)
  SameTVarOp              -> \args -> opTranslate args (mo_wordEq dflags)
  EqStablePtrOp           -> \args -> opTranslate args (mo_wordEq dflags)
-- See Note [Comparing stable names]
  EqStableNameOp          -> \args -> opTranslate args (mo_wordEq dflags)
 
  IntQuotRemOp -> \args -> opCallishHandledLater args $
    if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args)
    then Left (MO_S_QuotRem  (wordWidth dflags))
    else Right (genericIntQuotRemOp (wordWidth dflags))
 
  Int8QuotRemOp -> \args -> opCallishHandledLater args $
    if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args)
    then Left (MO_S_QuotRem W8)
    else Right (genericIntQuotRemOp W8)
 
  Int16QuotRemOp -> \args -> opCallishHandledLater args $
    if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args)
    then Left (MO_S_QuotRem W16)
    else Right (genericIntQuotRemOp W16)
 
  WordQuotRemOp -> \args -> opCallishHandledLater args $
    if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args)
    then Left (MO_U_QuotRem  (wordWidth dflags))
    else Right (genericWordQuotRemOp (wordWidth dflags))
 
  WordQuotRem2Op -> \args -> opCallishHandledLater args $
    if (ncg && (x86ish || ppc)) || llvm
    then Left (MO_U_QuotRem2 (wordWidth dflags))
    else Right (genericWordQuotRem2Op dflags)
 
  Word8QuotRemOp -> \args -> opCallishHandledLater args $
    if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args)
    then Left (MO_U_QuotRem W8)
    else Right (genericWordQuotRemOp W8)
 
  Word16QuotRemOp -> \args -> opCallishHandledLater args $
    if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args)
    then Left (MO_U_QuotRem W16)
    else Right (genericWordQuotRemOp W16)
 
  WordAdd2Op -> \args -> opCallishHandledLater args $
    if (ncg && (x86ish || ppc)) || llvm
    then Left (MO_Add2       (wordWidth dflags))
    else Right genericWordAdd2Op
 
  WordAddCOp -> \args -> opCallishHandledLater args $
    if (ncg && (x86ish || ppc)) || llvm
    then Left (MO_AddWordC   (wordWidth dflags))
    else Right genericWordAddCOp
 
  WordSubCOp -> \args -> opCallishHandledLater args $
    if (ncg && (x86ish || ppc)) || llvm
    then Left (MO_SubWordC   (wordWidth dflags))
    else Right genericWordSubCOp
 
  IntAddCOp -> \args -> opCallishHandledLater args $
    if (ncg && (x86ish || ppc)) || llvm
    then Left (MO_AddIntC    (wordWidth dflags))
    else Right genericIntAddCOp
 
  IntSubCOp -> \args -> opCallishHandledLater args $
    if (ncg && (x86ish || ppc)) || llvm
    then Left (MO_SubIntC    (wordWidth dflags))
    else Right genericIntSubCOp
 
  WordMul2Op -> \args -> opCallishHandledLater args $
    if ncg && (x86ish || ppc) || llvm
    then Left (MO_U_Mul2     (wordWidth dflags))
    else Right genericWordMul2Op
 
  IntMul2Op  -> \args -> opCallishHandledLater args $
    if ncg && x86ish
    then Left (MO_S_Mul2     (wordWidth dflags))
    else Right genericIntMul2Op
 
  FloatFabsOp -> \args -> opCallishHandledLater args $
    if (ncg && x86ish || ppc) || llvm
    then Left MO_F32_Fabs
    else Right $ genericFabsOp W32
 
  DoubleFabsOp -> \args -> opCallishHandledLater args $
    if (ncg && x86ish || ppc) || llvm
    then Left MO_F64_Fabs
    else Right $ genericFabsOp W64
 
  -- tagToEnum# is special: we need to pull the constructor
  -- out of the table, and perform an appropriate return.
  TagToEnumOp -> \[amode] -> PrimopCmmEmit_Raw $ \res_ty -> do
    -- If you're reading this code in the attempt to figure
    -- out why the compiler panic'ed here, it is probably because
    -- you used tagToEnum# in a non-monomorphic setting, e.g.,
    --         intToTg :: Enum a => Int -> a ; intToTg (I# x#) = tagToEnum# x#
    -- That won't work.
    let tycon = tyConAppTyCon res_ty
    MASSERT(isEnumerationTyCon tycon)
    dflags <- getDynFlags
    pure [tagToClosure dflags tycon amode]
 
-- Out of line primops.
-- TODO compiler need not know about these
 
  UnsafeThawArrayOp -> alwaysExternal
  CasArrayOp -> alwaysExternal
  UnsafeThawSmallArrayOp -> alwaysExternal
  CasSmallArrayOp -> alwaysExternal
  NewPinnedByteArrayOp_Char -> alwaysExternal
  NewAlignedPinnedByteArrayOp_Char -> alwaysExternal
  MutableByteArrayIsPinnedOp -> alwaysExternal
  DoubleDecode_2IntOp -> alwaysExternal
  DoubleDecode_Int64Op -> alwaysExternal
  FloatDecode_IntOp -> alwaysExternal
  ByteArrayIsPinnedOp -> alwaysExternal
  ShrinkMutableByteArrayOp_Char -> alwaysExternal
  ResizeMutableByteArrayOp_Char -> alwaysExternal
  ShrinkSmallMutableArrayOp_Char -> alwaysExternal
  NewArrayArrayOp -> alwaysExternal
  NewMutVarOp -> alwaysExternal
  AtomicModifyMutVar2Op -> alwaysExternal
  AtomicModifyMutVar_Op -> alwaysExternal
  CasMutVarOp -> alwaysExternal
  CatchOp -> alwaysExternal
  RaiseOp -> alwaysExternal
  RaiseIOOp -> alwaysExternal
  MaskAsyncExceptionsOp -> alwaysExternal
  MaskUninterruptibleOp -> alwaysExternal
  UnmaskAsyncExceptionsOp -> alwaysExternal
  MaskStatus -> alwaysExternal
  AtomicallyOp -> alwaysExternal
  RetryOp -> alwaysExternal
  CatchRetryOp -> alwaysExternal
  CatchSTMOp -> alwaysExternal
  NewTVarOp -> alwaysExternal
  ReadTVarOp -> alwaysExternal
  ReadTVarIOOp -> alwaysExternal
  WriteTVarOp -> alwaysExternal
  NewMVarOp -> alwaysExternal
  TakeMVarOp -> alwaysExternal
  TryTakeMVarOp -> alwaysExternal
  PutMVarOp -> alwaysExternal
  TryPutMVarOp -> alwaysExternal
  ReadMVarOp -> alwaysExternal
  TryReadMVarOp -> alwaysExternal
  IsEmptyMVarOp -> alwaysExternal
  DelayOp -> alwaysExternal
  WaitReadOp -> alwaysExternal
  WaitWriteOp -> alwaysExternal
  ForkOp -> alwaysExternal
  ForkOnOp -> alwaysExternal
  KillThreadOp -> alwaysExternal
  YieldOp -> alwaysExternal
  LabelThreadOp -> alwaysExternal
  IsCurrentThreadBoundOp -> alwaysExternal
  NoDuplicateOp -> alwaysExternal
  ThreadStatusOp -> alwaysExternal
  MkWeakOp -> alwaysExternal
  MkWeakNoFinalizerOp -> alwaysExternal
  AddCFinalizerToWeakOp -> alwaysExternal
  DeRefWeakOp -> alwaysExternal
  FinalizeWeakOp -> alwaysExternal
  MakeStablePtrOp -> alwaysExternal
  DeRefStablePtrOp -> alwaysExternal
  MakeStableNameOp -> alwaysExternal
  CompactNewOp -> alwaysExternal
  CompactResizeOp -> alwaysExternal
  CompactContainsOp -> alwaysExternal
  CompactContainsAnyOp -> alwaysExternal
  CompactGetFirstBlockOp -> alwaysExternal
  CompactGetNextBlockOp -> alwaysExternal
  CompactAllocateBlockOp -> alwaysExternal
  CompactFixupPointersOp -> alwaysExternal
  CompactAdd -> alwaysExternal
  CompactAddWithSharing -> alwaysExternal
  CompactSize -> alwaysExternal
  SeqOp -> alwaysExternal
  GetSparkOp -> alwaysExternal
  NumSparks -> alwaysExternal
  DataToTagOp -> alwaysExternal
  MkApUpd0_Op -> alwaysExternal
  NewBCOOp -> alwaysExternal
  UnpackClosureOp -> alwaysExternal
  ClosureSizeOp -> alwaysExternal
  GetApStackValOp -> alwaysExternal
  ClearCCSOp -> alwaysExternal
  TraceEventOp -> alwaysExternal
  TraceEventBinaryOp -> alwaysExternal
  TraceMarkerOp -> alwaysExternal
  SetThreadAllocationCounter -> alwaysExternal
 
 where
  alwaysExternal = \_ -> PrimopCmmEmit_External
  -- Note [QuotRem optimization]
  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  --
  -- `quot` and `rem` with constant divisor can be implemented with fast bit-ops
  -- (shift, .&.).
  --
  -- Currently we only support optimization (performed in GHC.Cmm.Opt) when the
  -- constant is a power of 2. #9041 tracks the implementation of the general
  -- optimization.
  --
  -- `quotRem` can be optimized in the same way. However as it returns two values,
  -- it is implemented as a "callish" primop which is harder to match and
  -- to transform later on. For simplicity, the current implementation detects cases
  -- that can be optimized (see `quotRemCanBeOptimized`) and converts STG quotRem
  -- primop into two CMM quot and rem primops.
  quotRemCanBeOptimized = \case
    [_, CmmLit (CmmInt n _) ] -> isJust (exactLog2 n)
    _                         -> False
 
  ncg = case hscTarget dflags of
           HscAsm -> True
           _      -> False
  llvm = case hscTarget dflags of
           HscLlvm -> True
           _       -> False
  x86ish = case platformArch (targetPlatform dflags) of
             ArchX86    -> True
             ArchX86_64 -> True
             _          -> False
  ppc = case platformArch (targetPlatform dflags) of
          ArchPPC      -> True
          ArchPPC_64 _ -> True
          _            -> False
 
data PrimopCmmEmit
  = PrimopCmmEmit_External
  | PrimopCmmEmit_IntoRegs ([LocalReg] -- where to put the results
                           -> FCode ())
  -- | Manual escape hatch, this is just for the '@TagToEnum@'
  -- primop for now. It would be nice to remove this special case but that is
  -- future work.
  | PrimopCmmEmit_Raw (Type -- the return type, some primops are specialized to it
                       -> FCode [CmmExpr]) -- just for TagToEnum for now
 
opNop :: [CmmExpr] -> PrimopCmmEmit
opNop args = PrimopCmmEmit_IntoRegs $ \[res] -> emitAssign (CmmLocal res) arg
  where [arg] = args
 
opNarrow
  :: DynFlags
  -> [CmmExpr]
  -> (Width -> Width -> MachOp, Width)
  -> PrimopCmmEmit
opNarrow dflags args (mop, rep) = PrimopCmmEmit_IntoRegs $ \[res] -> emitAssign (CmmLocal res) $
  CmmMachOp (mop rep (wordWidth dflags)) [CmmMachOp (mop (wordWidth dflags) rep) [arg]]
  where [arg] = args
 
-- | These primops are implemented by CallishMachOps, because they sometimes
-- turn into foreign calls depending on the backend.
opCallish :: [CmmExpr] -> CallishMachOp -> PrimopCmmEmit
opCallish args prim = PrimopCmmEmit_IntoRegs $ \[res] -> emitPrimCall [res] prim args
 
opTranslate :: [CmmExpr] -> MachOp -> PrimopCmmEmit
opTranslate args mop = PrimopCmmEmit_IntoRegs $ \[res] -> do
  let stmt = mkAssign (CmmLocal res) (CmmMachOp mop args)
  emit stmt
 
-- | Basically a "manual" case, rather than one of the common repetitive forms
-- above. The results are a parameter to the returned function so we know the
-- choice of variant never depends on them.
opCallishHandledLater
  :: [CmmExpr]
  -> Either CallishMachOp GenericOp
  -> PrimopCmmEmit
opCallishHandledLater args callOrNot = PrimopCmmEmit_IntoRegs $ \res0 -> case callOrNot of
  Left op   -> emit $ mkUnsafeCall (PrimTarget op) res0 args
  Right gen -> gen res0 args
 
opAllDone
  :: ([LocalReg] -- where to put the results
      -> FCode ())
  -> PrimopCmmEmit
opAllDone f = PrimopCmmEmit_IntoRegs $ f
 
type GenericOp = [CmmFormal] -> [CmmActual] -> FCode ()
 
genericIntQuotRemOp :: Width -> GenericOp
genericIntQuotRemOp width [res_q, res_r] [arg_x, arg_y]
   = emit $ mkAssign (CmmLocal res_q)
              (CmmMachOp (MO_S_Quot width) [arg_x, arg_y]) <*>
            mkAssign (CmmLocal res_r)
              (CmmMachOp (MO_S_Rem  width) [arg_x, arg_y])
genericIntQuotRemOp _ _ _ = panic "genericIntQuotRemOp"
 
genericWordQuotRemOp :: Width -> GenericOp
genericWordQuotRemOp width [res_q, res_r] [arg_x, arg_y]
    = emit $ mkAssign (CmmLocal res_q)
               (CmmMachOp (MO_U_Quot width) [arg_x, arg_y]) <*>
             mkAssign (CmmLocal res_r)
               (CmmMachOp (MO_U_Rem  width) [arg_x, arg_y])
genericWordQuotRemOp _ _ _ = panic "genericWordQuotRemOp"
 
genericWordQuotRem2Op :: DynFlags -> GenericOp
genericWordQuotRem2Op dflags [res_q, res_r] [arg_x_high, arg_x_low, arg_y]
    = emit =<< f (widthInBits (wordWidth dflags)) zero arg_x_high arg_x_low
    where    ty = cmmExprType dflags arg_x_high
             shl   x i = CmmMachOp (MO_Shl   (wordWidth dflags)) [x, i]
             shr   x i = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, i]
             or    x y = CmmMachOp (MO_Or    (wordWidth dflags)) [x, y]
             ge    x y = CmmMachOp (MO_U_Ge  (wordWidth dflags)) [x, y]
             ne    x y = CmmMachOp (MO_Ne    (wordWidth dflags)) [x, y]
             minus x y = CmmMachOp (MO_Sub   (wordWidth dflags)) [x, y]
             times x y = CmmMachOp (MO_Mul   (wordWidth dflags)) [x, y]
             zero   = lit 0
             one    = lit 1
             negone = lit (fromIntegral (widthInBits (wordWidth dflags)) - 1)
             lit i = CmmLit (CmmInt i (wordWidth dflags))
 
             f :: Int -> CmmExpr -> CmmExpr -> CmmExpr -> FCode CmmAGraph
             f 0 acc high _ = return (mkAssign (CmmLocal res_q) acc <*>
                                      mkAssign (CmmLocal res_r) high)
             f i acc high low =
                 do roverflowedBit <- newTemp ty
                    rhigh'         <- newTemp ty
                    rhigh''        <- newTemp ty
                    rlow'          <- newTemp ty
                    risge          <- newTemp ty
                    racc'          <- newTemp ty
                    let high'         = CmmReg (CmmLocal rhigh')
                        isge          = CmmReg (CmmLocal risge)
                        overflowedBit = CmmReg (CmmLocal roverflowedBit)
                    let this = catAGraphs
                               [mkAssign (CmmLocal roverflowedBit)
                                          (shr high negone),
                                mkAssign (CmmLocal rhigh')
                                          (or (shl high one) (shr low negone)),
                                mkAssign (CmmLocal rlow')
                                          (shl low one),
                                mkAssign (CmmLocal risge)
                                          (or (overflowedBit `ne` zero)
                                              (high' `ge` arg_y)),
                                mkAssign (CmmLocal rhigh'')
                                          (high' `minus` (arg_y `times` isge)),
                                mkAssign (CmmLocal racc')
                                          (or (shl acc one) isge)]
                    rest <- f (i - 1) (CmmReg (CmmLocal racc'))
                                      (CmmReg (CmmLocal rhigh''))
                                      (CmmReg (CmmLocal rlow'))
                    return (this <*> rest)
genericWordQuotRem2Op _ _ _ = panic "genericWordQuotRem2Op"
 
genericWordAdd2Op :: GenericOp
genericWordAdd2Op [res_h, res_l] [arg_x, arg_y]
  = do dflags <- getDynFlags
       r1 <- newTemp (cmmExprType dflags arg_x)
       r2 <- newTemp (cmmExprType dflags arg_x)
       let topHalf x = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, hww]
           toTopHalf x = CmmMachOp (MO_Shl (wordWidth dflags)) [x, hww]
           bottomHalf x = CmmMachOp (MO_And (wordWidth dflags)) [x, hwm]
           add x y = CmmMachOp (MO_Add (wordWidth dflags)) [x, y]
           or x y = CmmMachOp (MO_Or (wordWidth dflags)) [x, y]
           hww = CmmLit (CmmInt (fromIntegral (widthInBits (halfWordWidth dflags)))
                                (wordWidth dflags))
           hwm = CmmLit (CmmInt (halfWordMask dflags) (wordWidth dflags))
       emit $ catAGraphs
          [mkAssign (CmmLocal r1)
               (add (bottomHalf arg_x) (bottomHalf arg_y)),
           mkAssign (CmmLocal r2)
               (add (topHalf (CmmReg (CmmLocal r1)))
                    (add (topHalf arg_x) (topHalf arg_y))),
           mkAssign (CmmLocal res_h)
               (topHalf (CmmReg (CmmLocal r2))),
           mkAssign (CmmLocal res_l)
               (or (toTopHalf (CmmReg (CmmLocal r2)))
                   (bottomHalf (CmmReg (CmmLocal r1))))]
genericWordAdd2Op _ _ = panic "genericWordAdd2Op"
 
-- | Implements branchless recovery of the carry flag @c@ by checking the
-- leftmost bits of both inputs @a@ and @b@ and result @r = a + b@:
--
-- @
--    c = a&b | (a|b)&~r
-- @
--
-- https://brodowsky.it-sky.net/2015/04/02/how-to-recover-the-carry-bit/
genericWordAddCOp :: GenericOp
genericWordAddCOp [res_r, res_c] [aa, bb]
 = do dflags <- getDynFlags
      emit $ catAGraphs [
        mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordAdd dflags) [aa,bb]),
        mkAssign (CmmLocal res_c) $
          CmmMachOp (mo_wordUShr dflags) [
            CmmMachOp (mo_wordOr dflags) [
              CmmMachOp (mo_wordAnd dflags) [aa,bb],
              CmmMachOp (mo_wordAnd dflags) [
                CmmMachOp (mo_wordOr dflags) [aa,bb],
                CmmMachOp (mo_wordNot dflags) [CmmReg (CmmLocal res_r)]
              ]
            ],
            mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1)
          ]
        ]
genericWordAddCOp _ _ = panic "genericWordAddCOp"
 
-- | Implements branchless recovery of the carry flag @c@ by checking the
-- leftmost bits of both inputs @a@ and @b@ and result @r = a - b@:
--
-- @
--    c = ~a&b | (~a|b)&r
-- @
--
-- https://brodowsky.it-sky.net/2015/04/02/how-to-recover-the-carry-bit/
genericWordSubCOp :: GenericOp
genericWordSubCOp [res_r, res_c] [aa, bb]
 = do dflags <- getDynFlags
      emit $ catAGraphs [
        mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordSub dflags) [aa,bb]),
        mkAssign (CmmLocal res_c) $
          CmmMachOp (mo_wordUShr dflags) [
            CmmMachOp (mo_wordOr dflags) [
              CmmMachOp (mo_wordAnd dflags) [
                CmmMachOp (mo_wordNot dflags) [aa],
                bb
              ],
              CmmMachOp (mo_wordAnd dflags) [
                CmmMachOp (mo_wordOr dflags) [
                  CmmMachOp (mo_wordNot dflags) [aa],
                  bb
                ],
                CmmReg (CmmLocal res_r)
              ]
            ],
            mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1)
          ]
        ]
genericWordSubCOp _ _ = panic "genericWordSubCOp"
 
genericIntAddCOp :: GenericOp
genericIntAddCOp [res_r, res_c] [aa, bb]
{-
   With some bit-twiddling, we can define int{Add,Sub}Czh portably in
   C, and without needing any comparisons.  This may not be the
   fastest way to do it - if you have better code, please send it! --SDM
 
   Return : r = a + b,  c = 0 if no overflow, 1 on overflow.
 
   We currently don't make use of the r value if c is != 0 (i.e.
   overflow), we just convert to big integers and try again.  This
   could be improved by making r and c the correct values for
   plugging into a new J#.
 
   { r = ((I_)(a)) + ((I_)(b));                                 \
     c = ((StgWord)(~(((I_)(a))^((I_)(b))) & (((I_)(a))^r)))    \
         >> (BITS_IN (I_) - 1);                                 \
   }
   Wading through the mass of bracketry, it seems to reduce to:
   c = ( (~(a^b)) & (a^r) ) >>unsigned (BITS_IN(I_)-1)
 
-}
 = do dflags <- getDynFlags
      emit $ catAGraphs [
        mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordAdd dflags) [aa,bb]),
        mkAssign (CmmLocal res_c) $
          CmmMachOp (mo_wordUShr dflags) [
                CmmMachOp (mo_wordAnd dflags) [
                    CmmMachOp (mo_wordNot dflags) [CmmMachOp (mo_wordXor dflags) [aa,bb]],
                    CmmMachOp (mo_wordXor dflags) [aa, CmmReg (CmmLocal res_r)]
                ],
                mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1)
          ]
        ]
genericIntAddCOp _ _ = panic "genericIntAddCOp"
 
genericIntSubCOp :: GenericOp
genericIntSubCOp [res_r, res_c] [aa, bb]
{- Similarly:
   #define subIntCzh(r,c,a,b)                                   \
   { r = ((I_)(a)) - ((I_)(b));                                 \
     c = ((StgWord)((((I_)(a))^((I_)(b))) & (((I_)(a))^r)))     \
         >> (BITS_IN (I_) - 1);                                 \
   }
 
   c =  ((a^b) & (a^r)) >>unsigned (BITS_IN(I_)-1)
-}
 = do dflags <- getDynFlags
      emit $ catAGraphs [
        mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordSub dflags) [aa,bb]),
        mkAssign (CmmLocal res_c) $
          CmmMachOp (mo_wordUShr dflags) [
                CmmMachOp (mo_wordAnd dflags) [
                    CmmMachOp (mo_wordXor dflags) [aa,bb],
                    CmmMachOp (mo_wordXor dflags) [aa, CmmReg (CmmLocal res_r)]
                ],
                mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1)
          ]
        ]
genericIntSubCOp _ _ = panic "genericIntSubCOp"
 
genericWordMul2Op :: GenericOp
genericWordMul2Op [res_h, res_l] [arg_x, arg_y]
 = do dflags <- getDynFlags
      let t = cmmExprType dflags arg_x
      xlyl <- liftM CmmLocal $ newTemp t
      xlyh <- liftM CmmLocal $ newTemp t
      xhyl <- liftM CmmLocal $ newTemp t
      r    <- liftM CmmLocal $ newTemp t
      -- This generic implementation is very simple and slow. We might
      -- well be able to do better, but for now this at least works.
      let topHalf x = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, hww]
          toTopHalf x = CmmMachOp (MO_Shl (wordWidth dflags)) [x, hww]
          bottomHalf x = CmmMachOp (MO_And (wordWidth dflags)) [x, hwm]
          add x y = CmmMachOp (MO_Add (wordWidth dflags)) [x, y]
          sum = foldl1 add
          mul x y = CmmMachOp (MO_Mul (wordWidth dflags)) [x, y]
          or x y = CmmMachOp (MO_Or (wordWidth dflags)) [x, y]
          hww = CmmLit (CmmInt (fromIntegral (widthInBits (halfWordWidth dflags)))
                               (wordWidth dflags))
          hwm = CmmLit (CmmInt (halfWordMask dflags) (wordWidth dflags))
      emit $ catAGraphs
             [mkAssign xlyl
                  (mul (bottomHalf arg_x) (bottomHalf arg_y)),
              mkAssign xlyh
                  (mul (bottomHalf arg_x) (topHalf arg_y)),
              mkAssign xhyl
                  (mul (topHalf arg_x) (bottomHalf arg_y)),
              mkAssign r
                  (sum [topHalf    (CmmReg xlyl),
                        bottomHalf (CmmReg xhyl),
                        bottomHalf (CmmReg xlyh)]),
              mkAssign (CmmLocal res_l)
                  (or (bottomHalf (CmmReg xlyl))
                      (toTopHalf (CmmReg r))),
              mkAssign (CmmLocal res_h)
                  (sum [mul (topHalf arg_x) (topHalf arg_y),
                        topHalf (CmmReg xhyl),
                        topHalf (CmmReg xlyh),
                        topHalf (CmmReg r)])]
genericWordMul2Op _ _ = panic "genericWordMul2Op"
 
genericIntMul2Op :: GenericOp
genericIntMul2Op [res_c, res_h, res_l] [arg_x, arg_y]
 = do dflags <- getDynFlags
      -- Implement algorithm from Hacker's Delight, 2nd edition, p.174
      let t = cmmExprType dflags arg_x
      p   <- newTemp t
      -- 1) compute the multiplication as if numbers were unsigned
      let wordMul2 = case emitPrimOp dflags WordMul2Op [arg_x,arg_y] of
            PrimopCmmEmit_External -> panic "Unsupported out-of-line WordMul2Op"
            PrimopCmmEmit_IntoRegs f -> f
            PrimopCmmEmit_Raw _ -> panic "Unsupported inline WordMul2Op"
      wordMul2 [p,res_l]
      -- 2) correct the high bits of the unsigned result
      let carryFill x = CmmMachOp (MO_S_Shr ww) [x, wwm1]
          sub x y     = CmmMachOp (MO_Sub   ww) [x, y]
          and x y     = CmmMachOp (MO_And   ww) [x, y]
          neq x y     = CmmMachOp (MO_Ne    ww) [x, y]
          f   x y     = (carryFill x) `and` y
          wwm1        = CmmLit (CmmInt (fromIntegral (widthInBits ww - 1)) ww)
          rl x        = CmmReg (CmmLocal x)
          ww          = wordWidth dflags
      emit $ catAGraphs
             [ mkAssign (CmmLocal res_h) (rl p `sub` f arg_x arg_y `sub` f arg_y arg_x)
             , mkAssign (CmmLocal res_c) (rl res_h `neq` carryFill (rl res_l))
             ]
genericIntMul2Op _ _ = panic "genericIntMul2Op"
 
-- This replicates what we had in libraries/base/GHC/Float.hs:
--
--    abs x    | x == 0    = 0 -- handles (-0.0)
--             | x >  0    = x
--             | otherwise = negateFloat x
genericFabsOp :: Width -> GenericOp
genericFabsOp w [res_r] [aa]
 = do dflags <- getDynFlags
      let zero   = CmmLit (CmmFloat 0 w)
 
          eq x y = CmmMachOp (MO_F_Eq w) [x, y]
          gt x y = CmmMachOp (MO_F_Gt w) [x, y]
 
          neg x  = CmmMachOp (MO_F_Neg w) [x]
 
          g1 = catAGraphs [mkAssign (CmmLocal res_r) zero]
          g2 = catAGraphs [mkAssign (CmmLocal res_r) aa]
 
      res_t <- CmmLocal <$> newTemp (cmmExprType dflags aa)
      let g3 = catAGraphs [mkAssign res_t aa,
                           mkAssign (CmmLocal res_r) (neg (CmmReg res_t))]
 
      g4 <- mkCmmIfThenElse (gt aa zero) g2 g3
 
      emit =<< mkCmmIfThenElse (eq aa zero) g1 g4
 
genericFabsOp _ _ _ = panic "genericFabsOp"
 
-- Note [Comparing stable names]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- A StableName# is actually a pointer to a stable name object (SNO)
-- containing an index into the stable name table (SNT). We
-- used to compare StableName#s by following the pointers to the
-- SNOs and checking whether they held the same SNT indices. However,
-- this is not necessary: there is a one-to-one correspondence
-- between SNOs and entries in the SNT, so simple pointer equality
-- does the trick.
 
------------------------------------------------------------------------------
-- Helpers for translating various minor variants of array indexing.
 
doIndexOffAddrOp :: Maybe MachOp
                 -> CmmType
                 -> [LocalReg]
                 -> [CmmExpr]
                 -> FCode ()
doIndexOffAddrOp maybe_post_read_cast rep [res] [addr,idx]
   = mkBasicIndexedRead 0 maybe_post_read_cast rep res addr rep idx
doIndexOffAddrOp _ _ _ _
   = panic "GHC.StgToCmm.Prim: doIndexOffAddrOp"
 
doIndexOffAddrOpAs :: Maybe MachOp
                   -> CmmType
                   -> CmmType
                   -> [LocalReg]
                   -> [CmmExpr]
                   -> FCode ()
doIndexOffAddrOpAs maybe_post_read_cast rep idx_rep [res] [addr,idx]
   = mkBasicIndexedRead 0 maybe_post_read_cast rep res addr idx_rep idx
doIndexOffAddrOpAs _ _ _ _ _
   = panic "GHC.StgToCmm.Prim: doIndexOffAddrOpAs"
 
doIndexByteArrayOp :: Maybe MachOp
                   -> CmmType
                   -> [LocalReg]
                   -> [CmmExpr]
                   -> FCode ()
doIndexByteArrayOp maybe_post_read_cast rep [res] [addr,idx]
   = do dflags <- getDynFlags
        mkBasicIndexedRead (arrWordsHdrSize dflags) maybe_post_read_cast rep res addr rep idx
doIndexByteArrayOp _ _ _ _
   = panic "GHC.StgToCmm.Prim: doIndexByteArrayOp"
 
doIndexByteArrayOpAs :: Maybe MachOp
                    -> CmmType
                    -> CmmType
                    -> [LocalReg]
                    -> [CmmExpr]
                    -> FCode ()
doIndexByteArrayOpAs maybe_post_read_cast rep idx_rep [res] [addr,idx]
   = do dflags <- getDynFlags
        mkBasicIndexedRead (arrWordsHdrSize dflags) maybe_post_read_cast rep res addr idx_rep idx
doIndexByteArrayOpAs _ _ _ _ _
   = panic "GHC.StgToCmm.Prim: doIndexByteArrayOpAs"
 
doReadPtrArrayOp :: LocalReg
                 -> CmmExpr
                 -> CmmExpr
                 -> FCode ()
doReadPtrArrayOp res addr idx
   = do dflags <- getDynFlags
        mkBasicIndexedRead (arrPtrsHdrSize dflags) Nothing (gcWord dflags) res addr (gcWord dflags) idx
 
doWriteOffAddrOp :: Maybe MachOp
                 -> CmmType
                 -> [LocalReg]
                 -> [CmmExpr]
                 -> FCode ()
doWriteOffAddrOp maybe_pre_write_cast idx_ty [] [addr,idx,val]
   = mkBasicIndexedWrite 0 maybe_pre_write_cast addr idx_ty idx val
doWriteOffAddrOp _ _ _ _
   = panic "GHC.StgToCmm.Prim: doWriteOffAddrOp"
 
doWriteByteArrayOp :: Maybe MachOp
                   -> CmmType
                   -> [LocalReg]
                   -> [CmmExpr]
                   -> FCode ()
doWriteByteArrayOp maybe_pre_write_cast idx_ty [] [addr,idx,val]
   = do dflags <- getDynFlags
        mkBasicIndexedWrite (arrWordsHdrSize dflags) maybe_pre_write_cast addr idx_ty idx val
doWriteByteArrayOp _ _ _ _
   = panic "GHC.StgToCmm.Prim: doWriteByteArrayOp"
 
doWritePtrArrayOp :: CmmExpr
                  -> CmmExpr
                  -> CmmExpr
                  -> FCode ()
doWritePtrArrayOp addr idx val
  = do dflags <- getDynFlags
       let ty = cmmExprType dflags val
           hdr_size = arrPtrsHdrSize dflags
       -- Update remembered set for non-moving collector
       whenUpdRemSetEnabled dflags
           $ emitUpdRemSetPush (cmmLoadIndexOffExpr dflags hdr_size ty addr ty idx)
       -- This write barrier is to ensure that the heap writes to the object
       -- referred to by val have happened before we write val into the array.
       -- See #12469 for details.
       emitPrimCall [] MO_WriteBarrier []
       mkBasicIndexedWrite hdr_size Nothing addr ty idx val
       emit (setInfo addr (CmmLit (CmmLabel mkMAP_DIRTY_infoLabel)))
       -- the write barrier.  We must write a byte into the mark table:
       -- bits8[a + header_size + StgMutArrPtrs_size(a) + x >> N]
       emit $ mkStore (
         cmmOffsetExpr dflags
          (cmmOffsetExprW dflags (cmmOffsetB dflags addr hdr_size)
                         (loadArrPtrsSize dflags addr))
          (CmmMachOp (mo_wordUShr dflags) [idx,
                                           mkIntExpr dflags (mUT_ARR_PTRS_CARD_BITS dflags)])
         ) (CmmLit (CmmInt 1 W8))
 
loadArrPtrsSize :: DynFlags -> CmmExpr -> CmmExpr
loadArrPtrsSize dflags addr = CmmLoad (cmmOffsetB dflags addr off) (bWord dflags)
 where off = fixedHdrSize dflags + oFFSET_StgMutArrPtrs_ptrs dflags
 
mkBasicIndexedRead :: ByteOff      -- Initial offset in bytes
                   -> Maybe MachOp -- Optional result cast
                   -> CmmType      -- Type of element we are accessing
                   -> LocalReg     -- Destination
                   -> CmmExpr      -- Base address
                   -> CmmType      -- Type of element by which we are indexing
                   -> CmmExpr      -- Index
                   -> FCode ()
mkBasicIndexedRead off Nothing ty res base idx_ty idx
   = do dflags <- getDynFlags
        emitAssign (CmmLocal res) (cmmLoadIndexOffExpr dflags off ty base idx_ty idx)
mkBasicIndexedRead off (Just cast) ty res base idx_ty idx
   = do dflags <- getDynFlags
        emitAssign (CmmLocal res) (CmmMachOp cast [
                                   cmmLoadIndexOffExpr dflags off ty base idx_ty idx])
 
mkBasicIndexedWrite :: ByteOff      -- Initial offset in bytes
                    -> Maybe MachOp -- Optional value cast
                    -> CmmExpr      -- Base address
                    -> CmmType      -- Type of element by which we are indexing
                    -> CmmExpr      -- Index
                    -> CmmExpr      -- Value to write
                    -> FCode ()
mkBasicIndexedWrite off Nothing base idx_ty idx val
   = do dflags <- getDynFlags
        emitStore (cmmIndexOffExpr dflags off (typeWidth idx_ty) base idx) val
mkBasicIndexedWrite off (Just cast) base idx_ty idx val
   = mkBasicIndexedWrite off Nothing base idx_ty idx (CmmMachOp cast [val])
 
-- ----------------------------------------------------------------------------
-- Misc utils
 
cmmIndexOffExpr :: DynFlags
                -> ByteOff  -- Initial offset in bytes
                -> Width    -- Width of element by which we are indexing
                -> CmmExpr  -- Base address
                -> CmmExpr  -- Index
                -> CmmExpr
cmmIndexOffExpr dflags off width base idx
   = cmmIndexExpr dflags width (cmmOffsetB dflags base off) idx
 
cmmLoadIndexOffExpr :: DynFlags
                    -> ByteOff  -- Initial offset in bytes
                    -> CmmType  -- Type of element we are accessing
                    -> CmmExpr  -- Base address
                    -> CmmType  -- Type of element by which we are indexing
                    -> CmmExpr  -- Index
                    -> CmmExpr
cmmLoadIndexOffExpr dflags off ty base idx_ty idx
   = CmmLoad (cmmIndexOffExpr dflags off (typeWidth idx_ty) base idx) ty
 
setInfo :: CmmExpr -> CmmExpr -> CmmAGraph
setInfo closure_ptr info_ptr = mkStore closure_ptr info_ptr
 
------------------------------------------------------------------------------
-- Helpers for translating vector primops.
 
vecVmmType :: PrimOpVecCat -> Length -> Width -> CmmType
vecVmmType pocat n w = vec n (vecCmmCat pocat w)
 
vecCmmCat :: PrimOpVecCat -> Width -> CmmType
vecCmmCat IntVec   = cmmBits
vecCmmCat WordVec  = cmmBits
vecCmmCat FloatVec = cmmFloat
 
vecElemInjectCast :: DynFlags -> PrimOpVecCat -> Width -> Maybe MachOp
vecElemInjectCast _      FloatVec _   =  Nothing
vecElemInjectCast dflags IntVec   W8  =  Just (mo_WordTo8  dflags)
vecElemInjectCast dflags IntVec   W16 =  Just (mo_WordTo16 dflags)
vecElemInjectCast dflags IntVec   W32 =  Just (mo_WordTo32 dflags)
vecElemInjectCast _      IntVec   W64 =  Nothing
vecElemInjectCast dflags WordVec  W8  =  Just (mo_WordTo8  dflags)
vecElemInjectCast dflags WordVec  W16 =  Just (mo_WordTo16 dflags)
vecElemInjectCast dflags WordVec  W32 =  Just (mo_WordTo32 dflags)
vecElemInjectCast _      WordVec  W64 =  Nothing
vecElemInjectCast _      _        _   =  Nothing
 
vecElemProjectCast :: DynFlags -> PrimOpVecCat -> Width -> Maybe MachOp
vecElemProjectCast _      FloatVec _   =  Nothing
vecElemProjectCast dflags IntVec   W8  =  Just (mo_s_8ToWord  dflags)
vecElemProjectCast dflags IntVec   W16 =  Just (mo_s_16ToWord dflags)
vecElemProjectCast dflags IntVec   W32 =  Just (mo_s_32ToWord dflags)
vecElemProjectCast _      IntVec   W64 =  Nothing
vecElemProjectCast dflags WordVec  W8  =  Just (mo_u_8ToWord  dflags)
vecElemProjectCast dflags WordVec  W16 =  Just (mo_u_16ToWord dflags)
vecElemProjectCast dflags WordVec  W32 =  Just (mo_u_32ToWord dflags)
vecElemProjectCast _      WordVec  W64 =  Nothing
vecElemProjectCast _      _        _   =  Nothing
 
 
-- NOTE [SIMD Design for the future]
-- Check to make sure that we can generate code for the specified vector type
-- given the current set of dynamic flags.
-- Currently these checks are specific to x86 and x86_64 architecture.
-- This should be fixed!
-- In particular,
-- 1) Add better support for other architectures! (this may require a redesign)
-- 2) Decouple design choices from LLVM's pseudo SIMD model!
--   The high level LLVM naive rep makes per CPU family SIMD generation is own
--   optimization problem, and hides important differences in eg ARM vs x86_64 simd
-- 3) Depending on the architecture, the SIMD registers may also support general
--    computations on Float/Double/Word/Int scalars, but currently on
--    for example x86_64, we always put Word/Int (or sized) in GPR
--    (general purpose) registers. Would relaxing that allow for
--    useful optimization opportunities?
--      Phrased differently, it is worth experimenting with supporting
--    different register mapping strategies than we currently have, especially if
--    someday we want SIMD to be a first class denizen in GHC along with scalar
--    values!
--      The current design with respect to register mapping of scalars could
--    very well be the best,but exploring the  design space and doing careful
--    measurements is the only only way to validate that.
--      In some next generation CPU ISAs, notably RISC V, the SIMD extension
--    includes  support for a sort of run time CPU dependent vectorization parameter,
--    where a loop may act upon a single scalar each iteration OR some 2,4,8 ...
--    element chunk! Time will tell if that direction sees wide adoption,
--    but it is from that context that unifying our handling of simd and scalars
--    may benefit. It is not likely to benefit current architectures, though
--    it may very well be a design perspective that helps guide improving the NCG.
 
 
checkVecCompatibility :: DynFlags -> PrimOpVecCat -> Length -> Width -> FCode ()
checkVecCompatibility dflags vcat l w = do
    when (hscTarget dflags /= HscLlvm) $ do
        sorry $ unlines ["SIMD vector instructions require the LLVM back-end."
                         ,"Please use -fllvm."]
    check vecWidth vcat l w
  where
    check :: Width -> PrimOpVecCat -> Length -> Width -> FCode ()
    check W128 FloatVec 4 W32 | not (isSseEnabled dflags) =
        sorry $ "128-bit wide single-precision floating point " ++
                "SIMD vector instructions require at least -msse."
    check W128 _ _ _ | not (isSse2Enabled dflags) =
        sorry $ "128-bit wide integer and double precision " ++
                "SIMD vector instructions require at least -msse2."
    check W256 FloatVec _ _ | not (isAvxEnabled dflags) =
        sorry $ "256-bit wide floating point " ++
                "SIMD vector instructions require at least -mavx."
    check W256 _ _ _ | not (isAvx2Enabled dflags) =
        sorry $ "256-bit wide integer " ++
                "SIMD vector instructions require at least -mavx2."
    check W512 _ _ _ | not (isAvx512fEnabled dflags) =
        sorry $ "512-bit wide " ++
                "SIMD vector instructions require -mavx512f."
    check _ _ _ _ = return ()
 
    vecWidth = typeWidth (vecVmmType vcat l w)
 
------------------------------------------------------------------------------
-- Helpers for translating vector packing and unpacking.
 
doVecPackOp :: Maybe MachOp  -- Cast from element to vector component
            -> CmmType       -- Type of vector
            -> CmmExpr       -- Initial vector
            -> [CmmExpr]     -- Elements
            -> CmmFormal     -- Destination for result
            -> FCode ()
doVecPackOp maybe_pre_write_cast ty z es res = do
    dst <- newTemp ty
    emitAssign (CmmLocal dst) z
    vecPack dst es 0
  where
    vecPack :: CmmFormal -> [CmmExpr] -> Int -> FCode ()
    vecPack src [] _ =
        emitAssign (CmmLocal res) (CmmReg (CmmLocal src))
 
    vecPack src (e : es) i = do
        dst <- newTemp ty
        if isFloatType (vecElemType ty)
          then emitAssign (CmmLocal dst) (CmmMachOp (MO_VF_Insert len wid)
                                                    [CmmReg (CmmLocal src), cast e, iLit])
          else emitAssign (CmmLocal dst) (CmmMachOp (MO_V_Insert len wid)
                                                    [CmmReg (CmmLocal src), cast e, iLit])
        vecPack dst es (i + 1)
      where
        -- vector indices are always 32-bits
        iLit = CmmLit (CmmInt (toInteger i) W32)
 
    cast :: CmmExpr -> CmmExpr
    cast val = case maybe_pre_write_cast of
                 Nothing   -> val
                 Just cast -> CmmMachOp cast [val]
 
    len :: Length
    len = vecLength ty
 
    wid :: Width
    wid = typeWidth (vecElemType ty)
 
doVecUnpackOp :: Maybe MachOp  -- Cast from vector component to element result
              -> CmmType       -- Type of vector
              -> CmmExpr       -- Vector
              -> [CmmFormal]   -- Element results
              -> FCode ()
doVecUnpackOp maybe_post_read_cast ty e res =
    vecUnpack res 0
  where
    vecUnpack :: [CmmFormal] -> Int -> FCode ()
    vecUnpack [] _ =
        return ()
 
    vecUnpack (r : rs) i = do
        if isFloatType (vecElemType ty)
          then emitAssign (CmmLocal r) (cast (CmmMachOp (MO_VF_Extract len wid)
                                             [e, iLit]))
          else emitAssign (CmmLocal r) (cast (CmmMachOp (MO_V_Extract len wid)
                                             [e, iLit]))
        vecUnpack rs (i + 1)
      where
        -- vector indices are always 32-bits
        iLit = CmmLit (CmmInt (toInteger i) W32)
 
    cast :: CmmExpr -> CmmExpr
    cast val = case maybe_post_read_cast of
                 Nothing   -> val
                 Just cast -> CmmMachOp cast [val]
 
    len :: Length
    len = vecLength ty
 
    wid :: Width
    wid = typeWidth (vecElemType ty)
 
doVecInsertOp :: Maybe MachOp  -- Cast from element to vector component
              -> CmmType       -- Vector type
              -> CmmExpr       -- Source vector
              -> CmmExpr       -- Element
              -> CmmExpr       -- Index at which to insert element
              -> CmmFormal     -- Destination for result
              -> FCode ()
doVecInsertOp maybe_pre_write_cast ty src e idx res = do
    dflags <- getDynFlags
    -- vector indices are always 32-bits
    let idx' :: CmmExpr
        idx' = CmmMachOp (MO_SS_Conv (wordWidth dflags) W32) [idx]
    if isFloatType (vecElemType ty)
      then emitAssign (CmmLocal res) (CmmMachOp (MO_VF_Insert len wid) [src, cast e, idx'])
      else emitAssign (CmmLocal res) (CmmMachOp (MO_V_Insert len wid) [src, cast e, idx'])
  where
    cast :: CmmExpr -> CmmExpr
    cast val = case maybe_pre_write_cast of
                 Nothing   -> val
                 Just cast -> CmmMachOp cast [val]
 
    len :: Length
    len = vecLength ty
 
    wid :: Width
    wid = typeWidth (vecElemType ty)
 
------------------------------------------------------------------------------
-- Helpers for translating prefetching.
 
 
-- | Translate byte array prefetch operations into proper primcalls.
doPrefetchByteArrayOp :: Int
                      -> [CmmExpr]
                      -> FCode ()
doPrefetchByteArrayOp locality  [addr,idx]
   = do dflags <- getDynFlags
        mkBasicPrefetch locality (arrWordsHdrSize dflags)  addr idx
doPrefetchByteArrayOp _ _
   = panic "GHC.StgToCmm.Prim: doPrefetchByteArrayOp"
 
-- | Translate mutable byte array prefetch operations into proper primcalls.
doPrefetchMutableByteArrayOp :: Int
                      -> [CmmExpr]
                      -> FCode ()
doPrefetchMutableByteArrayOp locality  [addr,idx]
   = do dflags <- getDynFlags
        mkBasicPrefetch locality (arrWordsHdrSize dflags)  addr idx
doPrefetchMutableByteArrayOp _ _
   = panic "GHC.StgToCmm.Prim: doPrefetchByteArrayOp"
 
-- | Translate address prefetch operations into proper primcalls.
doPrefetchAddrOp ::Int
                 -> [CmmExpr]
                 -> FCode ()
doPrefetchAddrOp locality   [addr,idx]
   = mkBasicPrefetch locality 0  addr idx
doPrefetchAddrOp _ _
   = panic "GHC.StgToCmm.Prim: doPrefetchAddrOp"
 
-- | Translate value prefetch operations into proper primcalls.
doPrefetchValueOp :: Int
                 -> [CmmExpr]
                 -> FCode ()
doPrefetchValueOp  locality   [addr]
  =  do dflags <- getDynFlags
        mkBasicPrefetch locality 0 addr  (CmmLit (CmmInt 0 (wordWidth dflags)))
doPrefetchValueOp _ _
  = panic "GHC.StgToCmm.Prim: doPrefetchValueOp"
 
-- | helper to generate prefetch primcalls
mkBasicPrefetch :: Int          -- Locality level 0-3
                -> ByteOff      -- Initial offset in bytes
                -> CmmExpr      -- Base address
                -> CmmExpr      -- Index
                -> FCode ()
mkBasicPrefetch locality off base idx
   = do dflags <- getDynFlags
        emitPrimCall [] (MO_Prefetch_Data locality) [cmmIndexExpr dflags W8 (cmmOffsetB dflags base off) idx]
        return ()
 
-- ----------------------------------------------------------------------------
-- Allocating byte arrays
 
-- | Takes a register to return the newly allocated array in and the
-- size of the new array in bytes. Allocates a new
-- 'MutableByteArray#'.
doNewByteArrayOp :: CmmFormal -> ByteOff -> FCode ()
doNewByteArrayOp res_r n = do
    dflags <- getDynFlags
 
    let info_ptr = mkLblExpr mkArrWords_infoLabel
        rep = arrWordsRep dflags n
 
    tickyAllocPrim (mkIntExpr dflags (arrWordsHdrSize dflags))
        (mkIntExpr dflags (nonHdrSize dflags rep))
        (zeroExpr dflags)
 
    let hdr_size = fixedHdrSize dflags
 
    base <- allocHeapClosure rep info_ptr cccsExpr
                     [ (mkIntExpr dflags n,
                        hdr_size + oFFSET_StgArrBytes_bytes dflags)
                     ]
 
    emit $ mkAssign (CmmLocal res_r) base
 
-- ----------------------------------------------------------------------------
-- Comparing byte arrays
 
doCompareByteArraysOp :: LocalReg -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
                     -> FCode ()
doCompareByteArraysOp res ba1 ba1_off ba2 ba2_off n = do
    dflags <- getDynFlags
    ba1_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba1 (arrWordsHdrSize dflags)) ba1_off
    ba2_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba2 (arrWordsHdrSize dflags)) ba2_off
 
    -- short-cut in case of equal pointers avoiding a costly
    -- subroutine call to the memcmp(3) routine; the Cmm logic below
    -- results in assembly code being generated for
    --
    --   cmpPrefix10 :: ByteArray# -> ByteArray# -> Int#
    --   cmpPrefix10 ba1 ba2 = compareByteArrays# ba1 0# ba2 0# 10#
    --
    -- that looks like
    --
    --          leaq 16(%r14),%rax
    --          leaq 16(%rsi),%rbx
    --          xorl %ecx,%ecx
    --          cmpq %rbx,%rax
    --          je l_ptr_eq
    --
    --          ; NB: the common case (unequal pointers) falls-through
    --          ; the conditional jump, and therefore matches the
    --          ; usual static branch prediction convention of modern cpus
    --
    --          subq $8,%rsp
    --          movq %rbx,%rsi
    --          movq %rax,%rdi
    --          movl $10,%edx
    --          xorl %eax,%eax
    --          call memcmp
    --          addq $8,%rsp
    --          movslq %eax,%rax
    --          movq %rax,%rcx
    --  l_ptr_eq:
    --          movq %rcx,%rbx
    --          jmp *(%rbp)
 
    l_ptr_eq <- newBlockId
    l_ptr_ne <- newBlockId
 
    emit (mkAssign (CmmLocal res) (zeroExpr dflags))
    emit (mkCbranch (cmmEqWord dflags ba1_p ba2_p)
                    l_ptr_eq l_ptr_ne (Just False))
 
    emitLabel l_ptr_ne
    emitMemcmpCall res ba1_p ba2_p n 1
 
    emitLabel l_ptr_eq
 
-- ----------------------------------------------------------------------------
-- Copying byte arrays
 
-- | Takes a source 'ByteArray#', an offset in the source array, a
-- destination 'MutableByteArray#', an offset into the destination
-- array, and the number of bytes to copy.  Copies the given number of
-- bytes from the source array to the destination array.
doCopyByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
                  -> FCode ()
doCopyByteArrayOp = emitCopyByteArray copy
  where
    -- Copy data (we assume the arrays aren't overlapping since
    -- they're of different types)
    copy _src _dst dst_p src_p bytes align =
        emitMemcpyCall dst_p src_p bytes align
 
-- | Takes a source 'MutableByteArray#', an offset in the source
-- array, a destination 'MutableByteArray#', an offset into the
-- destination array, and the number of bytes to copy.  Copies the
-- given number of bytes from the source array to the destination
-- array.
doCopyMutableByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
                         -> FCode ()
doCopyMutableByteArrayOp = emitCopyByteArray copy
  where
    -- The only time the memory might overlap is when the two arrays
    -- we were provided are the same array!
    -- TODO: Optimize branch for common case of no aliasing.
    copy src dst dst_p src_p bytes align = do
        dflags <- getDynFlags
        (moveCall, cpyCall) <- forkAltPair
            (getCode $ emitMemmoveCall dst_p src_p bytes align)
            (getCode $ emitMemcpyCall  dst_p src_p bytes align)
        emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall
 
emitCopyByteArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
                      -> Alignment -> FCode ())
                  -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
                  -> FCode ()
emitCopyByteArray copy src src_off dst dst_off n = do
    dflags <- getDynFlags
    let byteArrayAlignment = wordAlignment dflags
        srcOffAlignment = cmmExprAlignment src_off
        dstOffAlignment = cmmExprAlignment dst_off
        align = minimum [byteArrayAlignment, srcOffAlignment, dstOffAlignment]
    dst_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags dst (arrWordsHdrSize dflags)) dst_off
    src_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags src (arrWordsHdrSize dflags)) src_off
    copy src dst dst_p src_p n align
 
-- | Takes a source 'ByteArray#', an offset in the source array, a
-- destination 'Addr#', and the number of bytes to copy.  Copies the given
-- number of bytes from the source array to the destination memory region.
doCopyByteArrayToAddrOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
doCopyByteArrayToAddrOp src src_off dst_p bytes = do
    -- Use memcpy (we are allowed to assume the arrays aren't overlapping)
    dflags <- getDynFlags
    src_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags src (arrWordsHdrSize dflags)) src_off
    emitMemcpyCall dst_p src_p bytes (mkAlignment 1)
 
-- | Takes a source 'MutableByteArray#', an offset in the source array, a
-- destination 'Addr#', and the number of bytes to copy.  Copies the given
-- number of bytes from the source array to the destination memory region.
doCopyMutableByteArrayToAddrOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
                               -> FCode ()
doCopyMutableByteArrayToAddrOp = doCopyByteArrayToAddrOp
 
-- | Takes a source 'Addr#', a destination 'MutableByteArray#', an offset into
-- the destination array, and the number of bytes to copy.  Copies the given
-- number of bytes from the source memory region to the destination array.
doCopyAddrToByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
doCopyAddrToByteArrayOp src_p dst dst_off bytes = do
    -- Use memcpy (we are allowed to assume the arrays aren't overlapping)
    dflags <- getDynFlags
    dst_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags dst (arrWordsHdrSize dflags)) dst_off
    emitMemcpyCall dst_p src_p bytes (mkAlignment 1)
 
 
-- ----------------------------------------------------------------------------
-- Setting byte arrays
 
-- | Takes a 'MutableByteArray#', an offset into the array, a length,
-- and a byte, and sets each of the selected bytes in the array to the
-- character.
doSetByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr
                 -> FCode ()
doSetByteArrayOp ba off len c = do
    dflags <- getDynFlags
 
    let byteArrayAlignment = wordAlignment dflags -- known since BA is allocated on heap
        offsetAlignment = cmmExprAlignment off
        align = min byteArrayAlignment offsetAlignment
 
    p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba (arrWordsHdrSize dflags)) off
    emitMemsetCall p c len align
 
-- ----------------------------------------------------------------------------
-- Allocating arrays
 
-- | Allocate a new array.
doNewArrayOp :: CmmFormal             -- ^ return register
             -> SMRep                 -- ^ representation of the array
             -> CLabel                -- ^ info pointer
             -> [(CmmExpr, ByteOff)]  -- ^ header payload
             -> WordOff               -- ^ array size
             -> CmmExpr               -- ^ initial element
             -> FCode ()
doNewArrayOp res_r rep info payload n init = do
    dflags <- getDynFlags
 
    let info_ptr = mkLblExpr info
 
    tickyAllocPrim (mkIntExpr dflags (hdrSize dflags rep))
        (mkIntExpr dflags (nonHdrSize dflags rep))
        (zeroExpr dflags)
 
    base <- allocHeapClosure rep info_ptr cccsExpr payload
 
    arr <- CmmLocal `fmap` newTemp (bWord dflags)
    emit $ mkAssign arr base
 
    -- Initialise all elements of the array
    let mkOff off = cmmOffsetW dflags (CmmReg arr) (hdrSizeW dflags rep + off)
        initialization = [ mkStore (mkOff off) init | off <- [0.. n - 1] ]
    emit (catAGraphs initialization)
 
    emit $ mkAssign (CmmLocal res_r) (CmmReg arr)
 
-- ----------------------------------------------------------------------------
-- Copying pointer arrays
 
-- EZY: This code has an unusually high amount of assignTemp calls, seen
-- nowhere else in the code generator.  This is mostly because these
-- "primitive" ops result in a surprisingly large amount of code.  It
-- will likely be worthwhile to optimize what is emitted here, so that
-- our optimization passes don't waste time repeatedly optimizing the
-- same bits of code.
 
-- More closely imitates 'assignTemp' from the old code generator, which
-- returns a CmmExpr rather than a LocalReg.
assignTempE :: CmmExpr -> FCode CmmExpr
assignTempE e = do
    t <- assignTemp e
    return (CmmReg (CmmLocal t))
 
-- | Takes a source 'Array#', an offset in the source array, a
-- destination 'MutableArray#', an offset into the destination array,
-- and the number of elements to copy.  Copies the given number of
-- elements from the source array to the destination array.
doCopyArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff
              -> FCode ()
doCopyArrayOp = emitCopyArray copy
  where
    -- Copy data (we assume the arrays aren't overlapping since
    -- they're of different types)
    copy _src _dst dst_p src_p bytes =
        do dflags <- getDynFlags
           emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes)
               (wordAlignment dflags)
 
 
-- | Takes a source 'MutableArray#', an offset in the source array, a
-- destination 'MutableArray#', an offset into the destination array,
-- and the number of elements to copy.  Copies the given number of
-- elements from the source array to the destination array.
doCopyMutableArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff
                     -> FCode ()
doCopyMutableArrayOp = emitCopyArray copy
  where
    -- The only time the memory might overlap is when the two arrays
    -- we were provided are the same array!
    -- TODO: Optimize branch for common case of no aliasing.
    copy src dst dst_p src_p bytes = do
        dflags <- getDynFlags
        (moveCall, cpyCall) <- forkAltPair
            (getCode $ emitMemmoveCall dst_p src_p (mkIntExpr dflags bytes)
             (wordAlignment dflags))
            (getCode $ emitMemcpyCall  dst_p src_p (mkIntExpr dflags bytes)
             (wordAlignment dflags))
        emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall
 
emitCopyArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> ByteOff
                  -> FCode ())  -- ^ copy function
              -> CmmExpr        -- ^ source array
              -> CmmExpr        -- ^ offset in source array
              -> CmmExpr        -- ^ destination array
              -> CmmExpr        -- ^ offset in destination array
              -> WordOff        -- ^ number of elements to copy
              -> FCode ()
emitCopyArray copy src0 src_off dst0 dst_off0 n =
    when (n /= 0) $ do
        dflags <- getDynFlags
 
        -- Passed as arguments (be careful)
        src     <- assignTempE src0
        dst     <- assignTempE dst0
        dst_off <- assignTempE dst_off0
 
        -- Nonmoving collector write barrier
        emitCopyUpdRemSetPush dflags (arrPtrsHdrSizeW dflags) dst dst_off n
 
        -- Set the dirty bit in the header.
        emit (setInfo dst (CmmLit (CmmLabel mkMAP_DIRTY_infoLabel)))
 
        dst_elems_p <- assignTempE $ cmmOffsetB dflags dst
                       (arrPtrsHdrSize dflags)
        dst_p <- assignTempE $ cmmOffsetExprW dflags dst_elems_p dst_off
        src_p <- assignTempE $ cmmOffsetExprW dflags
                 (cmmOffsetB dflags src (arrPtrsHdrSize dflags)) src_off
        let bytes = wordsToBytes dflags n
 
        copy src dst dst_p src_p bytes
 
        -- The base address of the destination card table
        dst_cards_p <- assignTempE $ cmmOffsetExprW dflags dst_elems_p
                       (loadArrPtrsSize dflags dst)
 
        emitSetCards dst_off dst_cards_p n
 
doCopySmallArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff
                   -> FCode ()
doCopySmallArrayOp = emitCopySmallArray copy
  where
    -- Copy data (we assume the arrays aren't overlapping since
    -- they're of different types)
    copy _src _dst dst_p src_p bytes =
        do dflags <- getDynFlags
           emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes)
               (wordAlignment dflags)
 
 
doCopySmallMutableArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff
                          -> FCode ()
doCopySmallMutableArrayOp = emitCopySmallArray copy
  where
    -- The only time the memory might overlap is when the two arrays
    -- we were provided are the same array!
    -- TODO: Optimize branch for common case of no aliasing.
    copy src dst dst_p src_p bytes = do
        dflags <- getDynFlags
        (moveCall, cpyCall) <- forkAltPair
            (getCode $ emitMemmoveCall dst_p src_p (mkIntExpr dflags bytes)
             (wordAlignment dflags))
            (getCode $ emitMemcpyCall  dst_p src_p (mkIntExpr dflags bytes)
             (wordAlignment dflags))
        emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall
 
emitCopySmallArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> ByteOff
                       -> FCode ())  -- ^ copy function
                   -> CmmExpr        -- ^ source array
                   -> CmmExpr        -- ^ offset in source array
                   -> CmmExpr        -- ^ destination array
                   -> CmmExpr        -- ^ offset in destination array
                   -> WordOff        -- ^ number of elements to copy
                   -> FCode ()
emitCopySmallArray copy src0 src_off dst0 dst_off n =
    when (n /= 0) $ do
        dflags <- getDynFlags
 
        -- Passed as arguments (be careful)
        src     <- assignTempE src0
        dst     <- assignTempE dst0
 
        -- Nonmoving collector write barrier
        emitCopyUpdRemSetPush dflags (smallArrPtrsHdrSizeW dflags) dst dst_off n
 
        -- Set the dirty bit in the header.
        emit (setInfo dst (CmmLit (CmmLabel mkSMAP_DIRTY_infoLabel)))
 
        dst_p <- assignTempE $ cmmOffsetExprW dflags
                 (cmmOffsetB dflags dst (smallArrPtrsHdrSize dflags)) dst_off
        src_p <- assignTempE $ cmmOffsetExprW dflags
                 (cmmOffsetB dflags src (smallArrPtrsHdrSize dflags)) src_off
        let bytes = wordsToBytes dflags n
 
        copy src dst dst_p src_p bytes
 
-- | Takes an info table label, a register to return the newly
-- allocated array in, a source array, an offset in the source array,
-- and the number of elements to copy. Allocates a new array and
-- initializes it from the source array.
emitCloneArray :: CLabel -> CmmFormal -> CmmExpr -> CmmExpr -> WordOff
               -> FCode ()
emitCloneArray info_p res_r src src_off n = do
    dflags <- getDynFlags
 
    let info_ptr = mkLblExpr info_p
        rep = arrPtrsRep dflags n
 
    tickyAllocPrim (mkIntExpr dflags (arrPtrsHdrSize dflags))
        (mkIntExpr dflags (nonHdrSize dflags rep))
        (zeroExpr dflags)
 
    let hdr_size = fixedHdrSize dflags
 
    base <- allocHeapClosure rep info_ptr cccsExpr
                     [ (mkIntExpr dflags n,
                        hdr_size + oFFSET_StgMutArrPtrs_ptrs dflags)
                     , (mkIntExpr dflags (nonHdrSizeW rep),
                        hdr_size + oFFSET_StgMutArrPtrs_size dflags)
                     ]
 
    arr <- CmmLocal `fmap` newTemp (bWord dflags)
    emit $ mkAssign arr base
 
    dst_p <- assignTempE $ cmmOffsetB dflags (CmmReg arr)
             (arrPtrsHdrSize dflags)
    src_p <- assignTempE $ cmmOffsetExprW dflags src
             (cmmAddWord dflags
              (mkIntExpr dflags (arrPtrsHdrSizeW dflags)) src_off)
 
    emitMemcpyCall dst_p src_p (mkIntExpr dflags (wordsToBytes dflags n))
        (wordAlignment dflags)
 
    emit $ mkAssign (CmmLocal res_r) (CmmReg arr)
 
-- | Takes an info table label, a register to return the newly
-- allocated array in, a source array, an offset in the source array,
-- and the number of elements to copy. Allocates a new array and
-- initializes it from the source array.
emitCloneSmallArray :: CLabel -> CmmFormal -> CmmExpr -> CmmExpr -> WordOff
                    -> FCode ()
emitCloneSmallArray info_p res_r src src_off n = do
    dflags <- getDynFlags
 
    let info_ptr = mkLblExpr info_p
        rep = smallArrPtrsRep n
 
    tickyAllocPrim (mkIntExpr dflags (smallArrPtrsHdrSize dflags))
        (mkIntExpr dflags (nonHdrSize dflags rep))
        (zeroExpr dflags)
 
    let hdr_size = fixedHdrSize dflags
 
    base <- allocHeapClosure rep info_ptr cccsExpr
                     [ (mkIntExpr dflags n,
                        hdr_size + oFFSET_StgSmallMutArrPtrs_ptrs dflags)
                     ]
 
    arr <- CmmLocal `fmap` newTemp (bWord dflags)
    emit $ mkAssign arr base
 
    dst_p <- assignTempE $ cmmOffsetB dflags (CmmReg arr)
             (smallArrPtrsHdrSize dflags)
    src_p <- assignTempE $ cmmOffsetExprW dflags src
             (cmmAddWord dflags
              (mkIntExpr dflags (smallArrPtrsHdrSizeW dflags)) src_off)
 
    emitMemcpyCall dst_p src_p (mkIntExpr dflags (wordsToBytes dflags n))
        (wordAlignment dflags)
 
    emit $ mkAssign (CmmLocal res_r) (CmmReg arr)
 
-- | Takes and offset in the destination array, the base address of
-- the card table, and the number of elements affected (*not* the
-- number of cards). The number of elements may not be zero.
-- Marks the relevant cards as dirty.
emitSetCards :: CmmExpr -> CmmExpr -> WordOff -> FCode ()
emitSetCards dst_start dst_cards_start n = do
    dflags <- getDynFlags
    start_card <- assignTempE $ cardCmm dflags dst_start
    let end_card = cardCmm dflags
                   (cmmSubWord dflags
                    (cmmAddWord dflags dst_start (mkIntExpr dflags n))
                    (mkIntExpr dflags 1))
    emitMemsetCall (cmmAddWord dflags dst_cards_start start_card)
        (mkIntExpr dflags 1)
        (cmmAddWord dflags (cmmSubWord dflags end_card start_card) (mkIntExpr dflags 1))
        (mkAlignment 1) -- no alignment (1 byte)
 
-- Convert an element index to a card index
cardCmm :: DynFlags -> CmmExpr -> CmmExpr
cardCmm dflags i =
    cmmUShrWord dflags i (mkIntExpr dflags (mUT_ARR_PTRS_CARD_BITS dflags))
 
------------------------------------------------------------------------------
-- SmallArray PrimOp implementations
 
doReadSmallPtrArrayOp :: LocalReg
                      -> CmmExpr
                      -> CmmExpr
                      -> FCode ()
doReadSmallPtrArrayOp res addr idx = do
    dflags <- getDynFlags
    mkBasicIndexedRead (smallArrPtrsHdrSize dflags) Nothing (gcWord dflags) res addr
        (gcWord dflags) idx
 
doWriteSmallPtrArrayOp :: CmmExpr
                       -> CmmExpr
                       -> CmmExpr
                       -> FCode ()
doWriteSmallPtrArrayOp addr idx val = do
    dflags <- getDynFlags
    let ty = cmmExprType dflags val
 
    -- Update remembered set for non-moving collector
    tmp <- newTemp ty
    mkBasicIndexedRead (smallArrPtrsHdrSize dflags) Nothing ty tmp addr ty idx
    whenUpdRemSetEnabled dflags $ emitUpdRemSetPush (CmmReg (CmmLocal tmp))
 
    emitPrimCall [] MO_WriteBarrier [] -- #12469
    mkBasicIndexedWrite (smallArrPtrsHdrSize dflags) Nothing addr ty idx val
    emit (setInfo addr (CmmLit (CmmLabel mkSMAP_DIRTY_infoLabel)))
 
------------------------------------------------------------------------------
-- Atomic read-modify-write
 
-- | Emit an atomic modification to a byte array element. The result
-- reg contains that previous value of the element. Implies a full
-- memory barrier.
doAtomicRMW :: LocalReg      -- ^ Result reg
            -> AtomicMachOp  -- ^ Atomic op (e.g. add)
            -> CmmExpr       -- ^ MutableByteArray#
            -> CmmExpr       -- ^ Index
            -> CmmType       -- ^ Type of element by which we are indexing
            -> CmmExpr       -- ^ Op argument (e.g. amount to add)
            -> FCode ()
doAtomicRMW res amop mba idx idx_ty n = do
    dflags <- getDynFlags
    let width = typeWidth idx_ty
        addr  = cmmIndexOffExpr dflags (arrWordsHdrSize dflags)
                width mba idx
    emitPrimCall
        [ res ]
        (MO_AtomicRMW width amop)
        [ addr, n ]
 
-- | Emit an atomic read to a byte array that acts as a memory barrier.
doAtomicReadByteArray
    :: LocalReg  -- ^ Result reg
    -> CmmExpr   -- ^ MutableByteArray#
    -> CmmExpr   -- ^ Index
    -> CmmType   -- ^ Type of element by which we are indexing
    -> FCode ()
doAtomicReadByteArray res mba idx idx_ty = do
    dflags <- getDynFlags
    let width = typeWidth idx_ty
        addr  = cmmIndexOffExpr dflags (arrWordsHdrSize dflags)
                width mba idx
    emitPrimCall
        [ res ]
        (MO_AtomicRead width)
        [ addr ]
 
-- | Emit an atomic write to a byte array that acts as a memory barrier.
doAtomicWriteByteArray
    :: CmmExpr   -- ^ MutableByteArray#
    -> CmmExpr   -- ^ Index
    -> CmmType   -- ^ Type of element by which we are indexing
    -> CmmExpr   -- ^ Value to write
    -> FCode ()
doAtomicWriteByteArray mba idx idx_ty val = do
    dflags <- getDynFlags
    let width = typeWidth idx_ty
        addr  = cmmIndexOffExpr dflags (arrWordsHdrSize dflags)
                width mba idx
    emitPrimCall
        [ {- no results -} ]
        (MO_AtomicWrite width)
        [ addr, val ]
 
doCasByteArray
    :: LocalReg  -- ^ Result reg
    -> CmmExpr   -- ^ MutableByteArray#
    -> CmmExpr   -- ^ Index
    -> CmmType   -- ^ Type of element by which we are indexing
    -> CmmExpr   -- ^ Old value
    -> CmmExpr   -- ^ New value
    -> FCode ()
doCasByteArray res mba idx idx_ty old new = do
    dflags <- getDynFlags
    let width = (typeWidth idx_ty)
        addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags)
               width mba idx
    emitPrimCall
        [ res ]
        (MO_Cmpxchg width)
        [ addr, old, new ]
 
------------------------------------------------------------------------------
-- Helpers for emitting function calls
 
-- | Emit a call to @memcpy@.
emitMemcpyCall :: CmmExpr -> CmmExpr -> CmmExpr -> Alignment -> FCode ()
emitMemcpyCall dst src n align = do
    emitPrimCall
        [ {-no results-} ]
        (MO_Memcpy (alignmentBytes align))
        [ dst, src, n ]
 
-- | Emit a call to @memmove@.
emitMemmoveCall :: CmmExpr -> CmmExpr -> CmmExpr -> Alignment -> FCode ()
emitMemmoveCall dst src n align = do
    emitPrimCall
        [ {- no results -} ]
        (MO_Memmove (alignmentBytes align))
        [ dst, src, n ]
 
-- | Emit a call to @memset@.  The second argument must fit inside an
-- unsigned char.
emitMemsetCall :: CmmExpr -> CmmExpr -> CmmExpr -> Alignment -> FCode ()
emitMemsetCall dst c n align = do
    emitPrimCall
        [ {- no results -} ]
        (MO_Memset (alignmentBytes align))
        [ dst, c, n ]
 
emitMemcmpCall :: LocalReg -> CmmExpr -> CmmExpr -> CmmExpr -> Int -> FCode ()
emitMemcmpCall res ptr1 ptr2 n align = do
    -- 'MO_Memcmp' is assumed to return an 32bit 'CInt' because all
    -- code-gens currently call out to the @memcmp(3)@ C function.
    -- This was easier than moving the sign-extensions into
    -- all the code-gens.
    dflags <- getDynFlags
    let is32Bit = typeWidth (localRegType res) == W32
 
    cres <- if is32Bit
              then return res
              else newTemp b32
 
    emitPrimCall
        [ cres ]
        (MO_Memcmp align)
        [ ptr1, ptr2, n ]
 
    unless is32Bit $ do
      emit $ mkAssign (CmmLocal res)
                      (CmmMachOp
                         (mo_s_32ToWord dflags)
                         [(CmmReg (CmmLocal cres))])
 
emitBSwapCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitBSwapCall res x width = do
    emitPrimCall
        [ res ]
        (MO_BSwap width)
        [ x ]
 
emitBRevCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitBRevCall res x width = do
    emitPrimCall
        [ res ]
        (MO_BRev width)
        [ x ]
 
emitPopCntCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitPopCntCall res x width = do
    emitPrimCall
        [ res ]
        (MO_PopCnt width)
        [ x ]
 
emitPdepCall :: LocalReg -> CmmExpr -> CmmExpr -> Width -> FCode ()
emitPdepCall res x y width = do
    emitPrimCall
        [ res ]
        (MO_Pdep width)
        [ x, y ]
 
emitPextCall :: LocalReg -> CmmExpr -> CmmExpr -> Width -> FCode ()
emitPextCall res x y width = do
    emitPrimCall
        [ res ]
        (MO_Pext width)
        [ x, y ]
 
emitClzCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitClzCall res x width = do
    emitPrimCall
        [ res ]
        (MO_Clz width)
        [ x ]
 
emitCtzCall :: LocalReg -> CmmExpr -> Width -> FCode ()
emitCtzCall res x width = do
    emitPrimCall
        [ res ]
        (MO_Ctz width)
        [ x ]
 
---------------------------------------------------------------------------
-- Pushing to the update remembered set
---------------------------------------------------------------------------
 
-- | Push a range of pointer-array elements that are about to be copied over to
-- the update remembered set.
emitCopyUpdRemSetPush :: DynFlags
                      -> WordOff    -- ^ array header size
                      -> CmmExpr    -- ^ destination array
                      -> CmmExpr    -- ^ offset in destination array (in words)
                      -> Int        -- ^ number of elements to copy
                      -> FCode ()
emitCopyUpdRemSetPush _dflags _hdr_size _dst _dst_off 0 = return ()
emitCopyUpdRemSetPush dflags hdr_size dst dst_off n =
    whenUpdRemSetEnabled dflags $ do
        updfr_off <- getUpdFrameOff
        graph <- mkCall lbl (NativeNodeCall,NativeReturn) [] args updfr_off []
        emit graph
  where
    lbl = mkLblExpr $ mkPrimCallLabel
          $ PrimCall (fsLit "stg_copyArray_barrier") rtsUnitId
    args =
      [ mkIntExpr dflags hdr_size
      , dst
      , dst_off
      , mkIntExpr dflags n
      ]